Перечисленные выше конструктивные элементы сварных соединений существенно влияют как на процесс их формирования при КТС, так и на показатели качества готовых сварных соединений. Поэтому их допускаемые значения в подавляющем большинстве случаев регламентируются как в зарубежной [22], так и отечественной практике КТС, например, в ГОСТах [23], ОСТах, отраслевых технологических рекомендациях, стандартах предприятий [14].
Размеры ядра (его диаметр dЯ и высота hЯ, а также проплавление деталей А1 и А2) наиболее значимо влияют на свойства точечного соединения, в первую очередь, на прочностные. Поэтому получение оптимальных значений этих параметров, которые должны находиться в пределах между минимальными и максимальными допускаемыми их значениями, и является основной задачей технологии точечной сварки.
Минимально допускаемые значения диаметра ядра определяются влиянием целого ряда факторов точечной сварки, например, таких как прочность сварных соединений и стабильность ее значений, устойчивость процесса КТС против образования выплесков, непроваров и др. Их значения зависят от толщины s свариваемых деталей [3, 10, 23]:
, (1.2) . (1.3)Они регламентированы ГОСТ 15878 – 79 (табл. 1.1). Эти табличные значения диаметров ядра выработаны многолетней практикой КТС.
Таблица 1.1
Минимально допускаемые значения диаметра ядра для соединений
группы А по ГОСТ 15878 – 79.
Толщина деталей, | Минимальный диаметр ядра, | Минимальная ширина нахлестки, В | Минимальный шаг между точками, tШ | ||
алюминиевые, магниевые, медные сплавы | стали, титановые сплавы | алюминиевые, магниевые, медные сплавы | стали, | ||
0,5 1,0 1,2 1,5 2,0 2,5 3,0 4,0 5,0 6,0 | 3 4 5 6 7 8 9 12 14 16 | 10 14 16 18 20 22 16 32 40 50 | 8 11 13 14 17 19 21 28 34 42 | 10 15 17 20 25 30 35 45 55 65 |
Величина проплавления деталей А1 и А2 в большинстве случаев должна находиться в пределах 20…80 % от толщины деталей. На титановых сплавах верхний предел увеличивают до 95 %, а на магниевых — уменьшают до 70 %.
Минимально допускаемое расстояние между осями швов b устанавливают из условия отсутствия влияния шунтирования тока на процесс КТС. Его выбирают таким, чтобы расстояние до соседних точек в любом направлении, например t1, было не меньше минимально допускаемого шага между точками tШ.
Минимальную ширину нахлестки В, а также минимальное расстояние от центра точки или оси шва до края нахлестки u устанавливают по условию отсутствия объемных пластических деформаций металла на краю нахлестки. Причем минимальные значения и должны быть не менее 0,5В.
Глубина вмятин от электродов с1и с2 не должна превышать 20 % от толщины деталей, поскольку они ухудшают внешний вид соединений и обычно уменьшают их прочность. Только при сварке деталей неравных толщин или в труднодоступных местах её допускают увеличивать до 30 % [2, 3, 15, 16].
Широкое применение в современном машиностроении точечных сварных соединений вместо клепаных, в том числе при изготовлении узлов летательных аппаратов, обусловлено не только преимуществами их технико-экономических показателей [22, 23], но и конкурентной способностью эксплуатационных свойств [2, 3, 9, 11, 15, 17]. Прежде всего, это относится к их прочности, которую в основном определяют размеры ядра расплавленного металла в совокупности с другими конструктивными элементами сварных соединений, причем в первую очередь — к прочности динамической [24...29]. Именно поэтому соответствие полученных при КТС размеров ядра заданным оптимальным значениям, в первую очередь его диаметра и проплавления деталей, является одним из основных критериев качества и надёжности соединений деталей, выполненных контактной точечной сваркой [10, 11, 14, 15].
1.2. Основные технологические приемы контактной точечной сварки
При КТС энергетическое воздействие на металл зоны формирования соединения осуществляют импульсом тока, а силовое – сжатием деталей электродными устройствами в месте сварки. Количественно это воздействие характеризуют параметрами режима сварки и представляют обычно в виде циклограмм их изменения во времени. Значения параметров тока и усилия сжатия электродов, характер их изменения в отдельные периоды цикла сварки определяют параметры термодеформационных процессов, протекающих в зоне сварки, и таким образом влияют на устойчивость процесса формирования соединения, в частности против образования непроваров и выплесков, на размеры ядра, местные и общие остаточные деформации и, в конечном итоге, на эксплуатационные свойства сварного соединения. Этим в основном и различаются отдельные способы точечной сварки, наиболее распространенные из которых рассмотрены ниже.
1.2.1. Термодеформационные процессы, протекающие в зоне сварки и общая схема формирования точечного сварного соединения
В общем случае для формирования сварных соединении деталей, в том числе и при контактной точечной сварке, необходимо образование физического контакта между соединяемыми их поверхностями, химических связей в нем и развитие релаксационных процессов в объемах металла зоны сварки. В каждой элементарной точке эти процессы идут последовательно, а по отношению ко всей соединяемой поверхности могут протекать одновременно. При КТС их зарождение и развитие обеспечивается комплексным тепловым и силовым воздействием на металл зоны формирования соединения [2, 3, 16, 30, 31].
Термодеформационные процессы, протекающие в зоне формирования точечного сварного соединения, в соответствии со значимостью их влияния на конечный результат сварки принято условно разделять на основные процессы и процессы сопутствующие [2, 3, 16].
К основным термодеформационным процессам относят процессы, без протекания которых формирование точечного сварного соединения в принципе невозможно. К ним относят, в частности, следующие:
- нагрев и расплавление металла проходящим током;
- образование общей зоны расплавленного металла (ядра) и его кристаллизацию на последней стадии формирования соединений;
- микроскопические деформации металла в контактах и макроскопические в зоне формирования соединения.
К сопутствующим термодеформационным процессам сварки относят процессы, которые не только не обязательны для формирования сварного соединения, но некоторые из них и нежелательны, так как ухудшают условия формирования соединения и конечные результаты сварки. При КТС они являются неизбежным следствием протекания в зоне сварки процессов основных. В частности, к сопутствующим процессам относят следующие:
- дилатацию металла в зоне формирования соединений;
- перемешивание жидкого металла в ядре и удаление окисных
пленок;
- воздействие термодеформационного цикла сварки на свойства металла в зоне сварки и прилегающей к ней области;
- образование остаточных напряжений и деформаций в деталях;
- массоперенос в контактах электрод – деталь.
Несмотря на изменение значимости влияния каждого из перечисленных выше основных термодеформационных процессов, в процессе сварки общая схема формирования соединения происходит по единой схеме. Поэтому цикл сварки во временной последовательности условно разделяют на отдельные этапы, в соответствии со значимостью влияния какого-либо из основных факторов в их период [3, 16]. По-видимому, цикл сварки во временной последовательности целесообразно разделить на следующие четыре этапа (рис. 1.5), которые отличаются не только значимостью влияния какого-либо из основных факторов на процесс формирования соединения, но и основными технологическими задачами, выполняемыми сочетанием параметров режима в этот период:
1-й этап — от начала сжатия деталей электродами усилием FЭ до начала импульса тока IСВ;
2-й этап — от начала импульса тока IСВ до начала расплавления металла в контакте деталь – деталь (до начала формирования ядра);
3-й этап — от начала формирования ядра диаметром dЯ в контакте деталь – деталь до окончания импульса сварочного тока IСВ;
На первом этапе сжатие деталей электродами вызывает микропластические деформации в контактах деталь-деталь и электрод-деталь, следствием которых является формирование механических и электрических контактов. Главная задача на этом этапе — это обеспечение стабильности параметров контактов, что является исходным условием устойчивого течения процесса сварки и получения стабильных размеров ядра.