Смекни!
smekni.com

Основы теории и технологии контактной точечной сварки (стр. 32 из 44)

, (3.72)

где z1 и z2 — координаты точек, в которых изотермы температуры плавления пересекают ось электродов.

Функцию, выражающую зависимость координаты r от координаты z в уравнении изотермы температуры плавления:

, можно получить из выражения (3.39). После преобразований эта функция может быть записана в следующем виде:

.

Подставив ее в зависимость (3.72) и вычислив интеграл при переменных пределах интегрирования

и
, в которых значение высоты ядра hЯt выражено формулой (3.40), получаем:

. (3.73)


В практике точечной сварки наиболее распространены электроды (рис. 3.31) со сферической рабочей поверхностью (рис. 3.31, а), а также конические (рис. 3.31, б) и цилиндрические (рис. 3.31, в) электродами с плоскими рабочими поверхностями.

Все они являются телами вращения, а потому объемы

, вытесняемые электродами при их вдавливании в поверхности деталей, могут быть определены не только по зависимостям (3.65) или (3.66), но и гораздо проще по зависимости (3.72). Однако и в этом нет необходимости, так как общеизвестны формулы, согласно которым вытесняемые объемы равны:

- при сферической рабочей поверхности электрода

, (3.74)

- при конической форме электрода

, (3.75)

- при цилиндрической форме электрода

, (3.76)

где ct — глубина вдавливания электродов в момент времени t; RЭ — радиус сферической рабочей поверхности электрода; dЭ — диаметр плоской рабочей поверхности электрода; dOt — диаметр отпечатка (контакта) электрод-деталь в момент времени t.

Вторым слагаемым в зависимости (3.74) можно пренебречь потому, что глубина вдавливания электродов при КТС обычно не превышает 10...20 % от толщины s свариваемых деталей, т. е.

, а радиусы электродов со сферической рабочей поверхностью
, при которых
и практически не влияет на результат расчета объема
. По этой же причине можно пренебречь разностью между dЭ и dOt в зависимости (3.75), так как при
и
, т. е. при
, и определять объем
по зависимости (3.76) как при цилиндрическом, так и коническом электродах.

Наиболее сложной задачей при расчетах вытесненного электродами объема

по зависимостям (3.74) и (3.76) является определение глубины вдавливания электродов ct в процессе формирования соединения. В настоящее время можно прогнозировать лишь качественный характер изменения этого параметра. Определить же значения ct расчетным путем в процессе КТС с учетом напряженно-деформированного состояния металла области зоны сварки, прилегающей к электроду, пока не удается из-за сложности протекающих там термодеформационных процессов. Поэтому в данной методике значения ct приближенно определяются через диаметр контакта электрод–деталь. С точностью до 0,01 % значения ct можно выразить через диаметр отпечатка dо (контакта электрод–деталь) при сварке электродами со сферическими рабочими поверхностями [84]:
.

Экспериментальные исследования показали, что диаметр dЭt контакта электрод–деталь при точечной сварке изменяется подобно изменению диаметра dПt контакта деталь–деталь (рис.3.32). При этом установлено, что в начале процесса КТС dЭt, на 5...15 % больше dПt, а в конце процесса — наоборот, dПt примерно на столько же больше, чем dЭt. Поэтому, для приближенных расчетов можно принять, что dЭt и dПt изменяются при сварке одинаково. Тогда изменение значений глубины вмятин от электродов в поверхностях деталей ct в процессе сварки электродами со сферической рабочей поверхностью при расчетах вытесняемого ими объема металла
по зависимости (3.74) можно выразить через изменение диаметра уплотняющего пояска следующим образом:

. (3.77)

Практика сварки электродами со сферической и плоской рабочими поверхностями показывает, что при сварке на режимах близких к оптимальным, например, рекомендованных в работах [3, 9, 11, 15...17], глубина их вдавливания в поверхности деталей в процессе формирования соединения изменяется примерно одинаково. Поэтому, при приближенных технологических расчетах значений

по зависимости (3.76) величину ct можно определять по зависимости (3.77) и для условий сварки электродами с плоской рабочей поверхностью, если подставить фиктивное значение RЭ, рекомендованное для этой же толщины деталей, например, в работах [3, 11, 16].

Тогда зависимость (3.68) для расчета степени пластической деформации металла в зоне сварки εt в любой момент t процесса формирования соединения на стадии нагрева с учетом сказанного выше и зависимостей (3.71), (3.73) и (3.77) можно преобразовать к следующему окончательному виду, удобному для практических расчетов [210, 217]:

(%), (3.78)

где для момента времени t, αТ — температурный коэффициент линейного расширения; azt, art и с — коэффициенты (см. зависимость 3.36); tНП время начала плавления металла (см. зависимость 3.37);

функция ошибок (см. зависимость (3.42)... (3.44)); s толщина деталей; dПt — диаметр уплотняющего пояска; β* — коэффициент увеличения объема металла ядра при его плавлении;
— приращение степени пластической деформации εt металла зоны сварки при вдавливании электродов, равное:

при сферической рабочей поверхности электрода

,

при конической и цилиндрической форме электрода

;

RЭ и dЭ – радиус (при сферической) и диаметр (при плоской) рабочих поверхностей электродов; сt — глубина вдавливания электродов в поверхности деталей (см. зависимость 3.77).

Таким образом, зависимость (3.78) позволяет при технологических расчетах приближенно определить степень пластической деформации εt металла в процессе формирования точечного сварного соединения в любой его момент t на стадии нагрева.

Скорость деформации, как это общепринято в теориях пластичности и обработки металлов давлением — это изменение степени деформации εt в единицу времени [220, 221, 227,228], т. е.:

. (3.79)

Размерность скорости деформации зависит от размерности ее степени и может быть

или
:
.