Смекни!
smekni.com

Основы теории и технологии контактной точечной сварки (стр. 7 из 44)

1.3.3. Усилие сжатия электродов

Усилие сжатия электродов (сварочное усилие) FСВ — один из важнейших параметров режима КТС, который оказывает влияние на все основные процессы, ответственные за формирование соединения, в частности, на микро- и макропластические деформации, на выделение и перераспределение теплоты, на охлаждение металла в зоне сварки и кристаллизацию его в ядре.

С увеличением FСВ увеличиваются пластические деформации металла в зоне сварки и площади контактов, уменьшается плотность тока в них, уменьшается электрическое сопротивление участка электрод–электрод и стабилизируется его величина. Поэтому при постоянстве остальных параметров режима увеличение FСВ вызывает уменьшение размеров ядра
(рис. 1.9, в), прочности сварных точек при одновременном понижении и их стабильности. Если же увеличение FСВ сопровождается таким увеличением IСВ или tСВ, что размеры ядра остаются неизменными, то с ростом величины сварочного усилия прочность точек возрастает и становится более стабильной. [10, 77…79]

Как и сварочный ток, сварочное усилие определяют в основном по эмпирическим зависимостям, предложенным для приближенного расчета или пересчета сварочного усилия и основанным на подобии процессов КТС. Методики пересчета FСВ исходят из подобия процессов формирования соединений при сварке деталей из одних и тех же металлов разных толщин. Все они, к сожалению, также не отличаются ни высокой точностью, ни универсальностью. В частности, для пересчетов и расчетов FСВ предложены следующие зависимости [10, 15, 73, 80...82]:

;
;

;
; ;

;
,

где F0 — удельное сварочное усилие; dЯ — диаметр ядра расплавленного металла с известным FСВ; dЯ — диаметр ядра, для которого рассчитывают FСВ; P0 — удельное давление, определяемое экспериментально; dЭ — диаметр рабочей поверхности электрода; s — толщина деталей; k1 и k2 —коэффициенты, учитывающие сопротивление деформации металла и конструктивную жесткость изделия; σ02 — условный предел текучести свариваемого металла при нормальной температуре;

— предел текучести свариваемого металла при температуре 300о С;

1.3.4. Форма и размеры рабочих поверхностей электродов

Форма и размеры рабочих поверхностей электродов (рис. 1.3: dЭ — при плоской и RЭ — при сферической), контактирующие со свариваемыми деталями, существенно влияют на качество получаемых сварных соединений. Увеличение площади контакта электрод–деталь, например, из-за износа рабочей поверхности электродов приводят к уменьшению плотности тока и давления в зоне сварки, а, следовательно, к уменьшению размеров ядра и снижению качества готовых точечных соединений (рис. 1.9, г).

Применяемая форма электродов зависит от свойств материала свариваемых деталей. Так, например, для сварки титановых, алюминиевых и магниевых сплавов, как правило, применяют электроды со сферическими рабочими поверхностями. Стали же, в основном сваривают электродами с плоской рабочей поверхностью.

Размеры рабочих поверхностей электродов в большинстве случаев выбирают исходя из толщины свариваемых деталей.

Радиус сферы электрода RЭ определяют, ориентируясь на конечный диаметр отпечатка и допустимую глубину вмятины, которая не должна превышать 10 % от толщины детали [83]. Исходя из этого условия предложены следующие зависимости для определения минимального RЭMIN и максимального RЭMAX радиусов рабочих поверхностей электродов в зависимости от толщины s свариваемых деталей [84]:

.

Диаметры плоских рабочих поверхностей электродов выбирают с учетом диаметров ядра, которые в свою очередь задают по толщине деталей. Значения dЭ определяют по следующим зависимостям [85, 86]:

,
.

Однако в практике КТС размеры рабочих поверхностей электродов обычно не рассчитывают. Значения dЭ и RЭ, как правило, выбирают по технологическим рекомендациям (табл. 1.2), в которых они близки к значениям, рассчитанным по приведенным выше зависимостям. Окончательные значения tСВ, IСВ, FСВ и RЭ или dЭ определяют и корректируют на образцах технологической пробы [3, 15].

Поскольку приемлемые по точности для практики КТС методики оптимизации режимов сварки (сочетаний IСВ, tСВ и FСВ) пока не разработаны параметры одного из них, как правило, время сварки tСВ, определяют ориентировочно по технологическим рекомендациям, основанным на экспериментальных исследованиях процессов КТС и опыте их практического использования в промышленности. После этого для принятого значения tСВ по приближенным методикам, определяют силу IСВ и усилие сжатия электродов FСВ [2…4, 7…11, 13, 15…17].

Таким образом, существующие расчетные методики определения основных параметров режима весьма не совершенны. У них можно отметить общий недостаток — они не отражают физической сущности процессов, протекающих при КТС, не являются универсальными и применимы только для тех ограниченных областей толщин и металлов, на основании результатов исследований которых они и получены. Они не могут использоваться для решения задач, связанных с программированным изменением термодеформационных процессов, протекающих при формировании точечных сварных соединений.

1.3.5. Критерии подобия для определения режимов сварки

Выше, в п. 1.2.1 отмечалось, что, несмотря на изменение значимости влияния на отдельных этапах формирования соединения каждого из основных термодеформационных процессов, протекающих в зоне сварки, на процесс сварки общая схема формирования соединения происходит по единой схеме. При этом исследователями процесса КТС давно было подмечено, что при сварке деталей разных толщин параметры основных термодеформационных процессов изменяются по одинаковым закономерностям, то есть подобно. На основании результатов экспериментальных исследований рядом исследователей были разработаны основы теории подобия процессов КТС и предложен ряд критериев — безразмерных величин, математически описывающих это подобие [3, 4, 13, 16, 74…76, 87, 88].

Физические процессы подобны, если они описываются одним и тем же дифференциальным уравнением и имеют подобные начальные и граничные условия. Подобие выражается в том, что при определенных условиях в сходственных точках тел, т. е. в точках с одной и той же относительной координатой, например, в точках, расположенных в середине или на краю листа, достигаются одни и те же значения переменных параметров, в частности температуры или деформации.

По этим критериям, определяемым по моделям, рассчитывают масштабные коэффициенты для определения параметров процесса. Процессы точечной свирки деталей разной толщины могут быть подобны при равенстве критериев подобия, например, следующих [16]:

- критерий геометрического подобия

; (1.12)

- критерий гомохронности (подобия по времени — критерий Фурье)

; (1.13)

- критерий подобия тепловыделения

; (1.14)

- критерий подобия пластических деформаций

, (1.15)

где s — толщина деталей; dЯ — диаметр ядра; IД и tСВ — действующее значение сварочного тока и время его протекания; FСВ — сварочное усилие; сm, γ, ТПЛ, и σД — соответственно, массовая теплоёмкость, плотность, температура плавления и сопротивление деформации свариваемого металла.

Применение теории подобия позволяет по одному экспериментально определенному режиму с использованием критериев подобия рассчитать параметры режима сварки деталей других толщин. Значения критериев определяют по единичным опытам [3, 4, 15].

Однако часто расчеты по зависимостям (1.12…1.15) приводят к значительным погрешностям. Обусловлено это прежде всего тем, что в практике сварки не соблюдается критерий геометрического подобия
(см. табл. 1.1). Поэтому для приближенной оценки параметров режима в относительно малом диапазоне толщин (1…4 мм) пользуются рядом других, в основном эмпирических, соотношений, аналогичных по структуре указанным выше, например, [15].