Смекни!
smekni.com

Отражательная печь для плавки медных концентратов на штейн (стр. 4 из 4)

За счет интенсификации внешнего теплообмена при обогащении дутья кислородом, установки дополнительных сводовых горелок, и т. п. может быть увеличена величина результирующего теплового потока на поверхность зоны технологического процесса. На откосах соответственно возрастает скорость плавления шихты и вместе с ней удельная производительность печи. Скорость тепловой обработки продуктов плавки в ванне не зависит от условий внешней задачи и поэтому увеличение плотности результирующего теплового потока на ее поверхности и количества, поступающих в нее материалов приводит к перестройке температурного поля шлаковой ванны, т. е. к нарушению температурного режима плавки и, как следствие, способствует росту потерь металла со шлаком.

Наиболее отчетливо это проявляется при резком (скачкообразном) повышении скорости поступления материала в ванну, например при локальном «обрушении» откосов. При сползании относительно большой массы непроплавленной шихты в ванну уменьшается температура верхнего слоя шлакового расплава, его вязкость растет, что в сочетании с обильным выделении технологических газов приводит к образованию на поверхности ванны в том месте, где произошло «обрушение», пористого слоя («пены»), коэффициент теплопроводности которого за порядок ниже, чем у остального расплава. В результате этом участке согласно формуле (8'), резко снижается скорость тепловой обработки материала, в то время как с откосов расплавленная шихта продолжает поступать с прежней интенсивностью. Поэтомуснижение температуры и образование пористого слоя продолжается и вскоре этот слой «растекается» по всей поверхности ванны. В итоге, как показывает практика работы отражательных печей, температурный режим ванны становится неуправляемым и технологический процесс прекращается, так как металл прак­тически полностью переходит в шлак.

В тех случаях, когда при прочих равных условиях скорость поступления материала в ванну снижается за счет уменьшения поверхности откосов или каких-либо других причин и становится меньше оптимальной, согласно формуле (7) происходит умень­шение перепада температур по глубине шлаковой ванны. Это при­водит к интенсификации процессов диффузии штейна в шлак и увеличению его растворимости в шлаковом расплаве, т. е. росту потерь металла со шлаком.

Таким образом удельная производительность печи определяется скоростью процессов тепло - и массопереноса в ванне и зависит в основном от характеристики сырья (Qвш, λш, сшт, п, ki, Q0ш) и температурного режима плавки (Т0, Тср.ш, Тср.шт., Тδ).

Непосредственное экспериментальное определение скорости
тепловой обработки материала в ванне из-за сложности протекающих в ней процессов пока не представляется возможным. Это создает известные трудности при адаптации расчетной модели и подборе так называемых настроечных коэффициентов, использование которых в формулах (8) и (8') позволило заменить их для расчета конкретных параметров отражательных печей. Анализ этих уравнений может быть использован только для интерпретации существующих инженерных решений и обоснования выбора направления дальнейшего совершенствования работы агрегата. Необходимо также учитывать, что для большинства современных отражательных печей характерны максимальная для каждого агрегата интенсивность внешнего теплообмена и, как следствие, повышенная удельная производительность. В этих условиях повышение скорости тепловой обработки материала в ванне способствует сокращению потерь металла со шлаком и создает предпосылки для дальнейшего повышения производительности печи.

Проведенный анализ позволяет получить необходимые расчетные выражения и дать энергетическую интерпретацию известных технологических особенностей отражательной плавки и конструктивных решений отдельных элементов печи:

1. Для большинства медеплавильных заводов отражательная печь является единственным агрегатом, в котором могут перерабатываться конвертерные шлаки. В этих условиях довольно часто конвертерный шлак загружается в печь в твердом состоянии на поверхность откосов вместе с шихтой. Такой способ загрузки ведет к дополнительным затратам энергии, так как для повтор­ного расплавления шлака требуется значительное количество тепла. Тем не менее, он получил широкое распространение, так
как загрузка твердого конвертерного шлака на откосы способствует улучшению температурного режима плавки. На поверх­ности откосов присутствие в шихте твердого конвертерного шлака приводит к снижению температуры плавления образующегося шлака за счет снижения степени его кислотности. Следствием этого – является увеличение плотности результирующего теплового потока на поверхности откосов и соответственно коэффициента использования топлива в отражательной печи. Далее конвертер­ный шлак вместе с остальными продуктами плавки стекает на поверхность ванны, вблизи которой более интенсивно идут процессы «потребления тепла» подводимого за счет теплопроводности (уменьшается значение коэффициента ki). В этом случае, как показывает анализ уравнения (8'), увеличивается скорость тепловой обработки продуктов плавки и уменьшаются потери металла с отвальными шлаками.

2. Из формулы (8') следует, что скорость тепловой обра­ботки материала в ванне тем выше, чем меньше потери тепла через кладку на уровне ванны. Поэтому при строительстве отра­жательных печей всегда применяют подины с повышенной тепло­изоляцией, а толщина стен на уровне ванны в 3–3,5 раза больше, чем над ванной.

3. Глубина шлаковой ванны при заданном температурном режиме может быть определена из уравнения (7) и рассчитывается по формуле

Из полученной зависимости следует, что глубина шлаковой ванныне может быть установлена произвольно, так как она зависит от свойств перерабатываемой шихты и состава продуктов плавки. Ее величина тем больше, чем меньше теплопотребление шихты в ванне. В современных отражательных печах глубина шлаковой ванны колеблется в пределах 0,6-0 8 м.

4. Связь между параметрами теплового и температурного режимов ванны шлакового расплава, расположенного между шихтовыми откосами, может быть установлена с помощью урав­нения теплового баланса, которое имеет вид

, (9)

где Fв, – поверхность ванны, м2; q'пот – плотность теплового потока теплопроводностью (потери тепла) через ограждение печи на уровне ванны, отнесенная к единице ее поверхности; GB– средняя по массе скорость переработки материала в ванне, кг/с.

При соответствии параметров теплового режима ванны и от­косов скорости тепловой обработки шихтовых материалов на этих участках зоны технологического процесса должны быть равны между собой, т. е. G° = Gв. Для выполнения этого требования необходимо, чтобы на всем протяжении зоны плавления шихты плотности результирующих тепловых потоков для поверхностей откосов и ванны оставались неизменными, т. е. чтобы средняя температура продуктов сгорания топлива была одинакова на расстоянии примерно 20–25 м от передней торцевой стенки печи. При традиционном торцевом отоплении печи выполнить это усло­вие довольно трудно и поэтому в последнее время наметилась тенденция к применению сводового отопления.

Зона отстаивания продуктов плавки. Этот участок ванны расположен в хвостовой части печи и в нем происходит завершение процессов разделения продуктов плавки. Средняя температура шлака в нем на 70-100 °С ниже, чем в зоне плавления, что способствует повышению извлечения меди в штейн за счет снижения степени растворимости штейна в шлаке. При охлаждении шлака штейн выделяется из него в виде мельчайших капель, для отстаивания которых требуется продолжительное время. Так как время пребывания шлака в отстойной зоне прямо пропорционально количеству содержащегося в ней материала, под нее отводится обычно около одной третьей части рабочего пространства печи.


Список использованных источников

1 Кривандин В.А. Металлургическая теплотехника – 2 том / В.А. Кривандин; профессор, доктор техн. наук. – Москва: Металлургия, 1986 г. – 590 с.