Смекни!
smekni.com

Отражательные двухкамерные печи (стр. 2 из 4)

Дополнительный, не меньший эффект получается при рациональ­ной организации производства, т. е. сокращением длительности загрузки шихты, ее нагрева, рафинирования и разливки металла, Перечис­ленные мероприятия позволяют снизить удельный расход энергии на 35-40 %.

Дутье с добавкой кислорода в количестве 5-7 % применяют на не­которых зарубежных заводах. Жидкий кислород последовательно по­дают в испаритель, фильтр. Затем через редуктор и расходомер - в воздухопровод (рисунок 2). Удельный расход кислорода (приведенный к нормальным условиям) 0,0264 м3/кг.

Применение добавки кислорода способствует увеличению темпе­ратуры пламени на - 200 С, факел при этом становится короче, не омывает свод, что продлевает срок его службы, повышается КПД но­чи, производительность, снижается угар металла и расход дутьевого воздуха. Органические примеси шихты (масла, пластмасса, краски) сгорают практически полностью. Это уменьшает затраты на газоочистку.

Применение кислорода по приведенной выше схеме дает сущест­венный экономический эффект при незначительных капитальных за­тратах.

На ОАО «Мценский завод «Вторчермет» одном из крупнейших предприятий в Европе по переработке вторичного алюминиевого сы­рья уже несколько десятилетий работают двухванные пламенные отражательные печи круглого сечении (рисунок 3), Обе камеры, соединенные газоходом 3, отапливаются природным газом по противоточному принципу. Это более гибко регулирует температурный режим в ко­пильнике и уменьшает вероятность загрязнения расплава пылевидной фракцией отходящих газов. Емкость ванн диаметром 6 м каждая ~ 27-30 т. Загрузка шихты, чистка пода, перемешивание расплава, ска­чивание шлака производятся мульдозавалочной машиной. Произво­дительность печи 60 т/сут. Камера 1 служит для переплавки сырья. После заполнения ванны металлом его переливают в ванну-копильник 2 по внешнему переточному желобу 9. Выпуск металла произво­дится из копильника по желобу на конвейерную разливочную маши­ну. Цилиндрическая форма корпуса имеет внешнюю поверхность меньшую, чем у аналогичной по емкости печи прямоугольного сече­ния, и, следовательно, более низкие тепловые потери через кладку. Со­кращается срок между капитальными ремонтами.

Цилиндрическая форма ванны позволяет эффективнее перемеши­вать металл. Большой размер загрузочных окон представляет опреде­ленные удобства при загрузке крупногабаритной шихты, снижает вероятность повреждения элементов их конструкции. Перелив металла по протяженному открытому желобу приводит к тепловым потерям. Желоб обычно укрывают по всей длине железным коробом.


а — прямоточная; б — противоточная; 1 — плавильная камера; 2 — копильник; 3 — переточное окно; 4 — дымовое окно; 5 — свод; 6 — горелка плавильной камеры; 7 — горелка копильника; 8 — передняя стенка; 9 — ванне плавильной камеры; 10 — ванна копильника; 11 — горелочная стена;12 — откос; 13 - стойка каркаса; 14 — междукамерный холодильник, 15 — задняя стенка; 16 — переточные летки; 17- выпускная летка; 18 — свод копильника; 19 — форкамера; 20 — порог; 21 — заслонка

Рисунок 1- Двухкамерные отражательные печи

1 — печь; 2, 8 — вентиль вакуумный сильфонный ; 3, 5 — регулирующий вентиль; 4 — редуктор; 6 — электропневматический кран; 7 — фильтр; 9 —мановакуумметр, 10 — труба 11 — электронный блок

Рисунок 2 - Схема газодинамического перемешивания металла в вакуумной печи

Загружать нишу большими порциями или крупногабаритными, неразрезанными кусками возможно, используя конструкции пламен­ных отражательных печей со съемными или сдвигаемыми сводами (рисунок 4) Кратковременность операции загрузки повышает КПД и производительность печи.

На некоторых зарубежных заводах крупногабаритный лом, силь­но загрязненный конструкционно связанным железом, переплавля­ют в шахтных печах. Эти печи работают с более высоким тепловым КПД (~ 60 %), поскольку загружаемая и движущаяся сверху вниз шихта прогревается идущими навстречу горячими отходящими га­зами. В печь можно загружать почти не разделанную шихту, без под­сушки (влажную) объемом до 10 м за одну завалку, что повышает производительность печи и труда обслуживающего персонала.

1 — плавильная камера, 2 - копильник; 3 - соединительный газоход; 4 — дымоход окно; 5 - рекуператор, 6 - рабочее окно; 7 — заслонка рабочего окна, 8 - откос для выгреба; 9 - переточный желоб; 10—летка; 11 - ось грелки

Рисунок 3- Схема противоточной отражательной печи с крупными камерами

1 — емкость для жидкого кислорода; 2 - испаритель; 3 - фильтр; 4 редуктор; 5 - клапан с электромагнитным затвором; 6 - вентиль-дозатор, 7- расходомер, 8 — распылитель; 9 — воздуховод

Рисунок 4 - Схема подачи кислорода в дутье

2 Расчет печи

Соотношение с единицами СИ некоторых ранее применившихся единиц

Длина: -10

1А =10-10 м = 10-8 см =10-7 мм = 10-4 мкм

1 мкм =10-6 м = 10-4 см = 10-3 мм

1нм = 10-9 м =10-7 см = 10-6 мм = 10-3 мкм

Мощность, работа и энергия:

1 Вт ч = 3600Дж

1 кВт ч = 3,6*10-6 Дж = 3,6 МДж = 8,6*10-2 ккал

1 ккал/ч - 1,163 Вт

1 Вт = 0,860 ккал/ч = 3,6 кДж/ч

1 Дж = 2,39*10-4 ккал = 2,78*10-7 кВтч

Давление:

1 Па = 10-5 бap = 9,87*10-6 атм = 7,50*10-3 мм рт. ст.

1 атм = 1,01*105 Па = 1,01 бар = 7,6*102 мм рт. ст.

1 Торр = 1 мм рт. ст. = 1.33*102 Па = 1,33*10-2бар =

= 1,32*10-3 атм

1 Па = 1 Н/м2 кг/(м с2)

Теплота

Удельная теплоемкость:

1 Дж/(кг К)=2,39*10-4 ккал/(кг °С)

1 ккал/(кг °С) =4,19*103 Дж/( кг К)

Теплопроводность:

1 Вт/(м К) = 0,860 ккал/(ч м °С)

1 ккал/(ч м °С) = 1,163 Вт/(м К)

Коэффициент теплообмена (теплоотдачи), коэффициент теплопередачи:

1 ккал(ч м2 °С) =1,163 Вт/(м2 К)

1 ккал/(с см2 °С) = 41,868 кВт/(м2 К)

Поверхностная плотность теплового потока:

1 ккал(ч м2)= 1,163 Вт/м2.

1 Мкал(ч м2 ) = 1,163 кВт/м2

Тепловой расчет круглой двухкамерной отражательной печи

Исходные данные:

Площадь пода плавильной зоны и копильника, м2 …. по 28

Площадь свода плавильной зоны и копильника, м2… по 34 Температура в рабочем пространстве печи;

плавильной зоны, °С.......................................1100

копильника, "С..................................................1000

Производительность печи, т/ч................................5,4

Теплота (природный газ) сгорания 1 м3 (приведен­ная к нормальным условиям),используемого топлива,кДж....................................................35400

Состав шихты, %: (90÷92)Al + (8÷10) примеси (Fe, Mg, Si, Zn, Сu и др.),

Материальный баланс плавильной зоны:

Получено Масса плавки
п/п кг/ч т/плавка %
1 Металлический сплав 4220 21,1 78,3
2 Общие потери, угар, выгребы, съемы, сплески 1180 5,9 21,7
И г о г о 5400 27 100
Поступило Масса плавки
п/п кг/ч т/плавка %
1 Алюминий металлический в сплаве шихты 4240 21,2 78,5
2 Примеси 460 2,3 8,5
3 Флюсы 700 3,5 13
Итого 5400 27 100

Принимаем коэффициент избытка воздуха α = 1,1.

Объем воздуха, необходимого для сжигания 1 м3 (приведенного к нормальным условиям) природного газа L0 = 9,12 м3

Объем воздуха, необходимого для сжигания 1 м3 (приведенно­го к нормальным условиям) природного газа с учетом коэффици­ента избытка:

L= L0 * α =9,12*1,1 = 10,03 м3

Объем продуктов горения при сжигании 1м3 (приведенного к нормальным условиям) газа V0 =10,05 м3, с учетом коэффициента избытка воздуха:

V= V0 + (α -1)*L0 =10,05+(1,1-1)*9,12=10,96 м3

Приход тепла

1.Количество тепла от горения топлива:

QT = B* Qн =35400 В,

где B - расход топлива (приведенный к нормальным условиям), м3\ч; Qн - низшая теплотворная способность топлива, кДж/ м3,

2. Количество тепла, вносимого подогретым воздухом:

Qв =B* Св *L* tв=В*1,31*200*10,03=В*2628 кДж/ч

где Св - удельная теплоемкость воздуха, кДж/(м*К); tв - тем­пература подогретого воздуха, °С.

3. Количество тепла от экзотермических реакций:

Qэкз=A*G,

где А - суммарное количество тепла от окисления алюминия, кДж/кг; G-угар металла, кг/ч.

По практическим данным угар алюминии и среднем составляет 2 %,

G=4220*0,02=84,4 кг/ч, тогда

Qэкз=(Q\M)*G=1570/26.97*84.4*103 кДж/ч,

где Q - тепловой эффект реакции окислении алюминия, кДж/(г*моль), М - молекулярная масса алюминия, г.

4. Суммарный приход тепла:

Qт= Qв + Qэкз = В*3540 + В*2628 + 4910*103 кДж/ч

Расход тепла

1.Тепло на нагрев, расплавление и перегрев металла (алюминия);

где GAl - масса алюминия в сплаве шихты, кг/ч; t1, t2, t3 - температура алюминия, поступающего в печь, температура плавления алюминия и температура перегрева металла, °С, соответственно; Cp1,Cp2,Cp3 -удельные теплоемкости алюминия при t1, t2, t3 кДж/(кг К), соответственно; χAl - теплота плавления алюминия, кДж/кг,

2. Тепло на нагрев и расплавление флюсов:

где GKCl,GNaCl - масса КСl и NaCI, кг/ч; t1,t2 - температура флю­са, загружаемого в печь, и температура нагрева, °С, соответст­венно; Cp1,Cp2 и C’p1,C’p2 - удельные теплоемкости КСl и NaCI