Смекни!
smekni.com

Оценка, расчет и выбор конструктивных параметров двигателя (стр. 1 из 5)

Оценка, расчет и выбор конструктивных параметров двигателя

Содержание

Введение

1. Оценка и выбор параметров двигателя

1.2 Средняя скорость поршня и частота вращения

1.3 Диаметр цилиндра и ход поршня

1.4 Длина шатуна

1.5 Степень сжатия

1.6 Фазы газораспределения

2. Описание конструкции и систем двигателя.

2.1 Блок-картер

2.2 Головка цилиндров

2.3 Гильзы цилиндров

2.4 Механизм газораспределения

2.5 Коленчатый вал

2.6 Шатун

2.7 Поршень

2.8 Система смазки

2.9 Система питания

3. Расчёт рабочего процесса

3.1 Методика расчёта рабочего процесса

3.1.1 Вспомогательные расчёты

3.1.2 Упрощённый расчёт наполнения

3.1.3 Определение параметров рабочего тела в конце процесса сжатия

3.1.4 Определение параметров рабочего тела в конце "видимого" горения

3.1 5Определение параметров рабочего тела в конце процесса расширения

3.1 6 Индикаторные показатели двигателя

3.1 7 Эффективные показатели двигателя

3.1.8 Показатели турбины и нагнетателя

Заключение

Список используемой литературы

Приложение

Введение

Проблема экономии топливных ресурсов приобрела в настоящее время огромное значение практически для всех индустриально развитых стран, в том числе и для Украины.

Одним из главных потребителей нефтяного топлива является автомобильный тракторный транспорт, поэтому повышение экономичности и снижение выбросов вредных веществ для нормативов ЕВРО-3 является на сегодняшний день актуальной задачей. Важнейшим направлением в решение этой проблемы в первую очередь на грузовом, автомобильном, автобусном и сельскохозяйственном транспорте является дальнейшая его дизелизация, которая должна обеспечить в эксплуатации не только снижение на 25-30% расхода жидкого моторного топлива и более рациональное использование на транспорте всех видов моторных топлив, но и уменьшение загрязнении окружающей среды токсичными выбросами моторов. Реализация этого направления предусматривает как модернизацию выпускаемых, так и разработку новых типов дизелей. Большое распространение получили четырёхклапанные головки цилиндров с центральным расположением форсунки. В связи с высокими форсировками дизелей по литровой мощности увеличивается теплонапряженность деталей камеры сгорания и в частности поршня. Для обеспечения надежной работы поршня в условиях высоких термических нагрузок применяется охлаждение последнего маслом, при этом в поршне выполняем специальные охлаждающие каналы, а для подачи масла применяется форсунку, неподвижно установленную в картере дизеля. Ограничения, накладываемые на дизели для автомобилей, прежде всего, по экономичности, токсичности, ресурсу, массогабаритным и другим показателям, требуют создания быстроходных высокофорсированых дизелей с относительно малым рабочим объемом. Ряд ведущих автомобильных заводов, ПО, ассоциаций в СНГ (Кафедра ДВС НТУ "ХПИ", ЯМЗ, ХТЗ, ЛАЗ, "Серп и молот", з-д им. Малышева, и др.) создали и приступают к налаживаниюпроизводстватаких дизелей.

1. Оценка и выбор параметров двигателя

Для каждого типа двигателей приняты, на основе многолетнего практического опыта, определенные ограничения в выборе параметров рабочих процессов и численных отношений величин конструктивных параметров. Учесть этот опыт можно на основе анализа конструкций доведенных и хорошо себя зарекомендовавших в эксплуатации дизелей.

1.1 Число и расположение цилиндров

При выборе числа цилиндров следует учитывать их влияние на массовые и габаритные показатели двигателя, диаметр цилиндра, уравновешенность сил инерции движущихся масс, равномерность вращения коленчатого вала, тепловую напряженность поршневой группы.

С увеличением числа цилиндров можно уменьшить диаметр цилиндра, улучшить уравновешенность и равномерность хода двигателя, при этом усиливается охлаждение поршневой группы, при однорядном расположении цилиндров длина двигателя несколько увеличивается, а высота двигателя и его ширина уменьшаются.

Число цилиндров двигателя Z, связанное непосредственно с диаметром цилиндра, определяется заданными размерами двигателя, степенью равномерности крутящего момента, зависящего от протекания рабочего процесса и числа тактов, тепловой напряженностью поршневой группы, требованиями к уравновешиванию движущихся масс и значением сил инерции этих масс, условиями производства двигателей (при большом числе цилиндров и меньшем диаметре снижается стоимость изготовления двигателя, особенно в случае крупносерийного производства); опасностью увеличения крутильных колебаний вала, возможностью пуска двигателя с любого положения коленчатого вала.

Число цилиндров в выполненных конструкциях находится в пределах 1-24. Как правило, в однорядных конструкциях Z = 4 - 10, в многорядных конструкциях 4-20. Изменение числа цилиндров (при данной мощности) влияет на механический и индикаторный КПД двигателя. В многоцилиндровых конструкциях при увеличении Z размеры цилиндра и всего двигателя уменьшаются, снижается также масса движущихся деталей, что позволяет повысить частоту вращения коленчатого вала без превышения допустимых напряжений в деталях. При определении размеров цилиндра используют данные о находящихся в эксплуатации двигателях и результаты опытов на одноцилиндровых установках.

1.2 Средняя скорость поршня и частота вращения

Одним из основных параметров, зависящих от типа двигателя и его назначения, является скорость поршня. С увеличением средней скорости поршня повышается тепловая напряженность деталей двигателя (в первую очередь поршневой группы), увеличиваются силы инерции, нагружающие детали кривошипно-шатунного механизма, а также износ подшипников коленчатого вала, гильзы, цилиндра, повышается скорость газов в органах газораспределения, вследствие чего возрастают гидравлические сопротивления в них.

В быстроходных дизелях средняя скорость поршня лежит в пределах 8-12 м/с.

Частота вращения п коленчатого вала современных двигателей составляет 100-10000 об/мин и достигает в отдельных случаях 12000 - 15000 об/мин и более (малолитражные, гоночные автомобильные, мотоциклетные двигатели и т.д.).

Частота вращения вала стационарного двигателя, непосредственно связанного с электрогенератором, зависит от стандартного числа периодов переменного тока (50 периодов в секунду) при заданном числе пар полюсов электрогенератора. В последние годы наблюдается тенденция к отказу от значительного повышения частоты вращения двигателей. Повышение частоты вращения позволяет уменьшить диаметр цилиндра и ход поршня, и, следовательно, уменьшить габариты двигателя и его вес. Однако при этом возрастают механические потери и силы инерции, возвратно-поступательно движущихся масс, а, следовательно, повышается износ двигателя. Частота вращения коленчатого вала является определяющей для моторесурса двигателя. Поэтому число оборотов двигателя выбирают, исходя из назначения и условий его работы. Для автотракторных дизелей частоты вращения лежат в пределах 1500...3000 мин-

1.3 Диаметр цилиндра и ход поршня

Диаметр цилиндра влияет на тепловые потери в охлаждающую жидкость, тепловую напряженность поршня и головки цилиндра, нагрузки на кривошипно-шатунный механизм и подшипники. Этот параметр связан непосредственно со скоростью поршня и мощностью двигателя. В высокооборотных двигателях значение S/D целесообразно снижать до определенного предела для получения умеренной скорости поршня, повышения механического КПД, уменьшения размеров в направлении оси цилиндра (особенно в двухтактных двигателях) и повышении жесткости коленчатого вала. С уменьшением радиуса кривошипа увеличивается перекрытие шатунных и коренных шеек, кроме того, снижается износ поршневых колец. При меньших S/D легче разместить детали механизма газораспределения в крышке цилиндра. Однако с уменьшением S/D увеличивается длина двигателя. При этом износ гильз почти не уменьшается, так как он пропорционален частоте вращения вала и практически не зависит от хода поршня. В двухтактных двигателях с прямоточной схемой газообмена при низких S/D ухудшается качество процесса газообмена. Следует отметить, что значения сил, действующих на узлы, определяются в большей степени диаметром цилиндра и в меньшей ходом поршня.

В существующих конструкциях автотракторных дизелей S/D находиться в пределах 1,6...0,85. Отношение хода поршня к диаметру цилиндра (S/D) является одним из основных параметров, определяющих размеры и массу двигателя. Уменьшение отношения S/D позволяет увеличить число оборотов двигателя без роста средней скорости поршня, повысить коэффициент наполнения, снизить тепловые потери в охлаждающую жидкость, увеличить перекрытия шатунных и коренных шеек, и тем самым, повышать жесткость коленчатого вала. Однако при этом увеличивается длина и вес рядного двигателя.

1.4 Длина шатуна

Длина шатуна L определяется из соотношения λ = R/L, где R-радиус кривошипа. При увеличении R (укороченный шатун) возрастает максимальный угол отклонения шатуна, что вынуждает в нижней части цилиндра делать вырезы, повышается боковое давление на стенку цилиндра, в связи с чем растут потери на трение и кроме того увеличиваются силы инерции второго порядка, уменьшается высота двигателя, вес двигателя и вес шатуна. Удлинение шатуна дает уменьшение угла наклона, однако это приводит к увеличению его массы, а, следовательно, сил инерции.

1.5 Степень сжатия

Степень сжатия является одним из основных параметров, от которых зависит экономичность двигателя. С увеличением ε увеличивается индикаторный и эффективный КПД двигателя. Однако рост ε ограничивается уменьшением прочности деталей и ростом механических потерь в двигателе.

Степень сжатия ε в дизелях с непосредственным впрыскиванием встречается в пределах 12...18. С увеличением ε увеличивается индикаторный КПД, однако для двигателей с наддувом увеличивается максимальное давление цикла pz. В автотракторных дизелях степень сжатия в основном определяется способом смесеобразования и частотой вращения, она также зависит от давления наддува.