а = Аmax – Аном; b = Аmin – Аном. (2.12)
Разность верхнего и нижнего отклонений называют допуском δ
δ = а – (-b) = а + b
или δ = (Amax – Аном) – (Аmin – Аном) = Аmax – Аmin. (2.13)
Верхнее и нижнее отклонения размеров могут быть как положительными, так и отрицательными, но допуск всегда является положительным. Например, в размерах
, 30±0,05, видно, что в первом нижнее отклонение является положительным, а в третьем – отрицательным, но допуск во всех размерах является положительным δ = 0,1.Государственными стандартами (ГОСТ 25670-83) регламентирован расчет и определение допусков. Согласно этому все номинальные размеры разбиваются на определенные интервалы в миллиметрах (например, 3-6, 6-10, 10-18, 18-30 и т.д.) и для каждого из этих интервалов определяют единицу допуска в мкм.
, (2.14)где
- среднеарифметическое значение каждого интервала. Тогда величина допускаδ = аi, (2.15)
где а – число единиц допуска.
Для условного обозначения допусков на размеры вводится понятие квалитета, который состоит из латинской буквы и цифры – квалитета. Поле допуска в системе отверстий обозначается буквой Н, а в системе вала – строчной буквой h, например, Н12, h12.
Стандартами установлено 19 квалитетов: 01, 0, 1, 2, …, 17, из которых при изготовлении деталей РЭС используются только 10 (от 5 до 14). Расчетная величина допусков аi соответствует определенному значению квалитета:
Квалитет | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
Величина допуска δ (мкм) | 7i | 10i | 16i | 25i | 40i | 64i | 100i | 160i | 200i | 400i |
В ранее существующих стандартах квалитету соответствовало понятие класса точности.
В табл.2.1. приведено сопоставление квалитетов и соответствующих им классов точности.
Таблица 2.1
Классточности | 1 | 2 | 2а | 3 | 3а | 4 | 5 | 7 | |||
Квалитеты | Вал | Отв. | Вал | Отв. | Вал | Отв. | Валы и отверстия | ||||
5 | 6 | 6 | 7 | 7 | 8 | 8-9 | 10 | 11 | 12-13 | 14 |
Форма и расположение поверхностей деталей, к которым относятся неплоскостность, непрямолинейность, несимметричность, несоосность, отклонение от цилиндричности и др. нормированы ГОСТ 24643-81. Номинальные значения этих параметров приняты равными нулю, а в рабочих чертежах указываются только их предельные отклонения.
С технологической точки зрения заданные допуски на деталь ограничивают допустимую общую погрешность изготовления, которая слагается из погрешностей, возникающих на всех операциях технологического процесса. Чем жестче допуски на изделие, тем более высокие требования предъявляются к точности технологического оборудования и оснастки, к выбору методов и режимов изготовления.
Точность изготовления деталей зависит от погрешностей, возникающих в процессе производства на всех операциях технологического процесса, т.е. от производственных погрешностей. Все производственные погрешности могут быть разделены на систематические и случайные.
Систематические погрешности вызываются определенно действующими детерминированными причинами. Они могут быть постоянными или изменяющимися во времени. Например, неточность в измерительных устройствах станка, постоянный износ технологической оснастки (режущего инструмента, штампов, пресс-форм).
Случайными называют погрешности, возникающие под действием неуправляемых факторов технологического процесса, причем их значение не подчиняется каким-либо видимым закономерностям. Характер изменения и значение случайных производственных погрешностей не может быть определен без статистических методов обработки результатов измерения. Случайные погрешности вызываются неточностью установки деталей, инструмента, колебаниями припусков, неравномерностью обработки, непостоянством состава применяемых материалов и т.п.
Производственная погрешность слагается из следующих составляющих:
неточности оборудования и его износ в процессе работы;
неточность изготовления технологической оснастки и ее изнашивание в процессе работы (режущего инструмента, штампов, литейных форм);
неточность от установки инструмента и настройки на размер;
погрешности установки заготовки на станке или в приспособлении;
деформации в системе СПИД (станок-приспособление, инструмент-деталь);
тепловые деформации и внутренние напряжения в детали;
неточность измерительных инструментов;
ошибки исполнителя работы.
Анализ и расчет систематических погрешностей (например, неточность оборудования, технологической оснастки и их износ деформации в системе СПИД, тепловые деформации технологической системы и др.) основаны на использовании математической зависимости между величиной погрешности и причиной, вызывающей ее. Определение влияния случайных производственных погрешностей (например, рассеяние размеров при обработке, погрешность установки деталей на станке и др.) на точность обработки достигается методом математической статистики.
Общая погрешность обработки изделий определяется как алгебраическая сумма систематических и случайных погрешностей, которые суммируются по методу математической статистики
, (2.16)где ωi сист – систематические погрешности; ωj случ – случайные погрешности; 1,2 – коэффициент, который учитывает возможное отклонение распределения погрешностей от закона нормального распределения.
Для определения всех случайных погрешностей ωj случ в производстве используется метод математической статистики, основанный на изучении законов распределения размеров деталей и построения кривых распределения. Уравнение кривой нормального распределения имеет следующий вид:
, (2.17)где xi – отклонение размера i-й детали от его математического ожидания; σ – среднее квадратичное отклонение, которое характеризует степень рассеивания размеров относительно математического ожидания
, (2.18)где n – количество деталей в партии.
При рассеивании размеров деталей, вызываемых случайными погрешностями,ωj случ рассчитывают по значению σ, определяемого в ходе эксперимента
ωj случ = ± tσi, (2. 19)
где t – коэффициент, зависящий от процента риска и достоверности соответствия реального распределения принятому закону распределения погрешностей.
В технологических расчетах коэффициент t принимают равным 3 /5/ исходя из того, что достоверность соответствия реального распределения погрешностей нормальному закону составляет 0,9973.
Подставляя значение ωj случ в формулу (2.16) с учетом рассчитанных систематических погрешностей, получают общую погрешность ∆Адет технологического процесса.
Первым и основным критерием возможности применения любого технологического процесса является выполнение требования
∆Адет ≤ δ, (2. 20)
где δ – допуск на выполнение любого размера детали.
Классификация погрешностей на систематические и случайные условна, так как одна и та же производственная погрешность в зависимости от условия обработки может быть отнесена либо к детерминированным, либо случайным погрешностям. Метод математической статистики позволяет определить точность обработки деталей, на которую влияют как систематические, так и случайные погрешности технологического процесса /6,7/.
Вторым критерием возможности применения технологических процессов для изготовления деталей высокого качества является шероховатость поверхности.
Шероховатость – это параметр качества деталей, характеризуемый микрогеометрией поверхности. Шероховатость представляет собой совокупность микронеровностей (выступов и впадин), полученных в процессе формообразования деталей и различными методами обработки (механическими, электрофизическими). Величина, форма и шаг микронеровностей зависят от методов изготовления, режимов технологического процесса и других факторов.
Шероховатость поверхностей деталей оказывает существенное влияние на такие эксплуатационные свойства, как усталостная прочность, сопротивление коррозии, износостойкость, коэффициент трения сопряженных поверхностей.
В рабочих чертежах шероховатость поверхностей, независимо от метода изготовления деталей, обозначают следующими параметрами (ГОСТ 2789-73): Ra – среднее арифметическое отклонение профиля в пределах определенной базовой длины; Rz – высота неровностей профиля по десяти точкам в пределах базовой длины.
В справочной литературе, например /4/, даются числовые значения в мкм параметров Ra и Rz; правила обозначения их в рабочих, рекомендации по выбору шероховатостей поверхностей деталей различного назначения; значения параметров шероховатости в зависимости от квалитета точности обработки.
Между точностью обработки и шероховатостью поверхности существуют определенная взаимосвязь, чем выше точность обработки, тем меньше шероховатость. Но в некоторых случаях не требуется высокая точность обеспечения линейных размеров деталей, но необходима низкая шероховатость (например, для придания поверхности высокой отражательной способности, рабочие поверхности подложек гибридных интегральных схем и подложек устройств на поверхностных акустических волнах). В этом случае низкую шероховатость поверхности обеспечивают дополнительной обработкой - полированием.