Смекни!
smekni.com

Первичные измерительные преобразователи в системах безопасности (стр. 3 из 6)

(Б)

Рис. 4. Датчик измерения давления по переменному магнитному сопротивлению: А — основной принцип действия, Б — экви­валентная схема.


Рис. 5. Конструк­ция ПМС датчика для измерения низкого дав­ления: А — схема сбор­ки датчика. Б — устрой­ство датчика

При измерении низких давлений или когда для повышения динамического диапазо­на применяются толстые мембраны, для получения заданных значений разрешения и точности величина перемещения диафрагмы может оказаться недостаточной. В до­полнение к этому рабочие характеристики большинства пьезорезистивных и неко­торых емкостных датчиков довольно сильно зависят от температуры, что требует ис­пользования дополнительных цепей температурной компенсации. Оптические ме­тоды измерений обладают рядом преимуществ над остальными способами детекти­рования давления: простотой, низкой температурной чувствительностью, высокой разрешающей способностью и высокой точностью. Особенно перспективными яв­ляются оптоэлектронные датчики, реализованные на основе явления интерферен­ции света. Такие преобразователи используют принцип измерения малых пере­мещений Фабри-Перо. На рис. 6 показана упрощенная схема одного из таких датчиков.

Рис. 6. Схема

оптоэлектронного датчика давления, использующего принцип интерфе­ренции света.

В состав датчика входят следую­щие компоненты: пассивный кристалл оптического преобразователя давления с диафрагмой, вытравленной в кремни­евой подложке; светоизлучающий диод (СИД) и кристалл детектора. Де­тектор состоит из трех р-n фотодиодов, к двум из которых пристроены опти­ческие фильтры Фабри-Перо, имею­щие небольшую разницу по толщине. Эти фильтры представляют собой кремниевые зеркала с отражением от передней поверхности, покрытые сло­ем из SiO2 на поверхность которых нанесен тонкий слой А1. Оптический пре­образователь похож на емкостной дат­чик давления, за исключением того, что в нем конденсатор заменен на интерферометр Фабри-Перо, используемый для измерения отклонения диафрагмы. Диафрагма, сфор­мированная методом травления в подложке из монокристаллического кремния, по­крыта тонким слоем металла. На нижнюю сторону стеклянной пластины также на­несено металлическое покрытие. Между стеклянной пластиной и кремниевой под­ложкой существует зазор шириной w, получаемый при помощи двух прокладок. Два слоя металла формируют интерферометр Фабри-Перо с переменным воздушным за­зором w, в состав которого входят: подвижное зеркало, расположенное на мембране, меняющее свое положение при изменении давления, и параллельное ему стационар­ное полупрозрачное зеркало на стеклянной пластине. Поскольку величина w связа­на с внешним давлением линейной зависимостью, длина волны отраженного излу­чения меняется при изменении давления. Принцип действия датчика основан на из­мерении модуляции длины волны, получаемой от сложения падающих и отражен­ных излучений. Частота периодического интерференционного сигнала определяет­ся шириной рабочей полости интерферометра w, а его период равен 1/2w.

Детектор работает как демодулятор, электрический выходной сигнал которого пропорционален приложенному давлению. Он является оптическим компарато­ром, сравнивающим высоту рабочей камеры датчика давления и толщину вирту­альной камеры, сформированной за счет разности высот двух фильтров Фабри-Перо. Когда размеры этих камер равны, ток фотодетектора будет максимальным. При изменении давления происходит косинусная модуляция фототока с периодом, со­ответствующим половине средней длины волны источника излучения. Фотодиод без фильтра используется в качестве эталонного диода, отслеживающего полную интенсивность света, поступающего на детектор. Его выходное напряжение при­меняется при последующей обработке сигналов для получения нормированных ре­зультатов измерений. Поскольку рассматриваемый датчик давления является не­линейным, он обычно встраивается в микропроцессорную систему, на которую, в частности, возложены функции его линеаризации. Аналогичные оптические датчики давления реализуются на основе оптоволоконных световодов. Такие дат­чики незаменимы при проведении измерений в труднодоступных зонах, где исполь­зование ВЧ интерферометров невозможно. При производстве подложек для микроэлектронных устройств, оптических компо­нентов, а также в ходе проведения химических и других технологических процес­сов бывает необходимо измерять очень низкие давления. Без таких измерений не обходятся и при проведении некоторых научных экспериментов, например, в кос­мических исследованиях. Термин вакуум означает давление ниже атмосферного, но, как правило, он употребляется в случаях практического полного отсутствия дав­ления газов. Абсолютный вакуум получить невозможно, даже в космическом про­странстве нет ни одной зоны, где бы полностью отсутствовала материя.

Вакуум можно измерять и традиционными датчиками, при этом будут регис­трироваться отрицательные значения давления по отношению к атмосферному, но это очень неэффективный подход. Обычные датчики давления не могут опре­делять очень низкие концентрации газов из-за низкого отношения сигнал/шум. В отличие от традиционных датчиков давления измерители вакуума работают на совершенно других принципах, которые основываются на некоторых физичес­ких свойствах молекул газов и заключаются в определении числа молекул в за­данном объеме. К таким физическим свойствам относится теплопроводность, вязкость, ионизация и другие. В этом разделе будут даны краткие описания са­мых популярных датчиков давления, используемых для измерения вакуума.

Вакууметры Пирани — это датчики, измеряющие давление по теплопроводности газа. Этот тип измерителей вакуума был разработан первым. В конструкцию само­го простого датчика Пирани входит нагреваемая пластина. Измерение вакуума зак­лючается в определении количества тепла, теряемого этой пластиной, которое за­висит от давления газа. Существует несколько конструкций датчи­ков Пирани, используемых в вакуумной техни­ке. В состав некоторых из них входят две плас­тины, находящиеся при разных температурах. В таких датчиках давление газа определяется по количеству энергии, затраченной на нагрев пластин. Другие датчики используют только одну пластину, при этом теплопроводность газа измеряется по величине теплопотерь в окружа­ющие стенки. Для измерения температуры в со­став датчиков обычно входят либо термопары, либо платиновые терморезисторы.

Рис. 7. Вакууметр Пирани с термисторами с ОТК, работающими в режиме саморазогрева.

На рис. 7 показан дифференциальный вакууметр Пирани. Камера датчика разделена на две иден­тичные секции. В одной из секций газ находит­ся при эталонном давлении (например, при 1 атм =760 торр), а вторая расположена в ваку­умной камере, давление в которой необходи­мо измерить. В каждой камере есть нагревае­мая пластина, которая для уменьшения кондуктивной теплопередачи через окружающие твер­дые предметы подвешена на очень тонких со­единительных элементах. Желательно, чтобы обе камеры имели одинаковые форму, конструкцию и размеры, для того чтобы кондуктивные и радиационные потери тепла в них были идентичными. Чем сим­метричнее конструкция камер, тем лучше компенсируются паразитные теплопотери. Пластины нагрева­ются при помощи электри­ческих нагревателей. В рас­сматриваемом датчике на­гревательным элементом является термистор с отри­цательным температурным коэффициентом (ОТК). Сопротивления термисторов равны и имеют сравнительно низкий но­минал, поэтому в них воз­можно протекание процес­са саморазогрева Джоуля.

Ионизационные датчики напоминают вакуумные лампы, ис­пользуемые в качестве усилителей в старых радио­приемниках. Ток ионов между пластиной и нитью накаливания почти линейно зависит от плотнос­ти молекул (давления). Лампы вакуумных датчиков имеют обратное включение: на сетку по­дается высокое положительное напряжение, а пла­стина подсоединяется к низкому отрицательному напряжению. Выходным сигналом ионизационно­го датчика является ток ионов ip, снимаемый с пла­стины, пропорциональный давлению и току элек­тронов ig на сетке. В настоящее время используется усовершенствованная модель этого датчика, назы­ваемая измерителем Баярда-Алперта. Он обла­дает большей чувствительностью и стабильностью и может измерять более низкие давления. Его прин­цип действия аналогичен предыдущему датчику, но измеритель Баярда-Алперта имеет другую конст­рукцию, в нем пластина заменена на провод, окру­женный сеткой, а нить накаливания катода выне­сена наружу (рис. 8Б).