Смекни!
smekni.com

Передаточное отношение многоступенчатых передач (стр. 2 из 3)

Простейшие винтовые механизмы могут состоять из двух и трех звеньев. Наибольшее распространение получили трехзвенные схемы. Рассмотрим возможные кинематические схемы винтовых механизмов (рис. 4):

двухзвенный механизм (рис. 4, а). Винт 1 вращается и одновременно движется поступательно, гайка 2 неподвижна. Механизмы с такой схемой обладают наибольшей точностью получения линейных перемещений при ограниченной величине этих перемещений (до 50 мм). Применяют эту схему в измерительных устройствах (микрометры), механизмах настройки волноводов;

– трехзвенный механизм (рис. 4, б). Ведущий винт 1 образует со стойкой вращательную пару и винтовую пару с гайкой 2, которая движется поступательно по неподвижным направляющим. Механизмы с такой схемой обладают меньшей точностью, но значительным линейным перемещением гайки. Используют их для перемещения координатных столов технологического оборудования при изготовлении полупроводниковых приборов и для перемещения магнитных и оптических головок в дисководах ПЭВМ;

Рис. 4

трехзвенный механизм (рис. 4, в). Ведущим звеном является зафиксированная в осевом направлении вращающаяся гайка 2. Ведомое звено – винт 1 образует со стойкой поступательную кинематическую пару. Механизмы с такой кинематической схемой используются для получения сравнительно грубых установочных перемещений (установка на резкость окуляра бинокля);

двухзвенный механизм (рис. 4, г). Гайка 2 вращается и движется поступательно, винт 1 является стойкой, неподвижен. Механизмы с такой кинематической схемой используют в устройствах для получения сравнительно грубых установочных перемещений;

– трехзвенный механизм с двумя разными резьбами на винте (рис. 4, д) позволяет получать за один оборот винта 1 относительно малые перемещения ведомой гайки 2. Винт 1 вращается и движется поступательно относительно стойки-гайки 3, гайка 2 перемещается поступательно относительно направляющих. Механизм называется дифференциальным и применяется для получения перемещений, равных разности ходов винта в стойке 3 и гайки 2.

В механизмах винт – гайка с трением скольжения резьба нанесена непосредственно на детали винтовой пары. Характеризуется резьба следующими геометрическими параметрами (рис. 5): d – наружный диаметр резьбы; d1 – внутренний диаметр резьбы; d2 – средний диаметр резьбы; р – шаг резьбы–расстояние, измеренное вдоль оси резьбы, между параллельными сторонами соседних витков; рh –ход резьбы, для однозаходной рh = р, а для многозаходной – рh = zр, где z – число заходов; h – рабочая высота профиля; a – угол профиля; g – угол подъема резьбы (рис. 5) образован касательной к винтовой линии в точке на среднем диаметре резьбы и плоскостью, перпендикулярной к оси резьбы, и определяется из выражения

tg g = z p/p d2. (3)

Геометрические параметры резьб и допуски на их размеры стандартизированы. Резьбы классифицируют по различным признакам:

по форме поверхности, на которую наносится резьба – на цилиндрическую и коническую. Наиболее распространена цилиндрическая резьба. Коническую резьбу применяют для плотных соединений пробок, труб;

по форме профиля – на треугольные, трапецеидальные, прямоугольные, круглые и др.;

по направлению винтовой линии – на правую и левую резьбу. Винты с правой резьбой ввинчивают по часовой и вывинчивают против часовой стрелки. Правое направление имеет абсолютное большинство резьб.

По назначению резьбы делят на крепежные, крепежно-уплотнительные и ходовые. Крепежная резьба должна обладать достаточной прочностью и значительным трением, предохраняющим соединяемые детали от самоотвинчивания. Крепежно-уплотнительные резьбы помимо перечисленных свойств должны обеспечить повышенную плотность соединения. Ходовые резьбы должны быть с малым трением, чтобы уменьшить износ и повысить КПД подвижного резьбового соединения.

Метрическая резьба (см. рис. 5, а) получила наибольшее распространение в резьбовых крепежных соединениях. Имеет профиль равностороннего треугольника с углом профиля a = 60°. Вершины и впадины резьбы для уменьшения концентрации напряжений притуплены по прямой или по дуге. Радиальный зазор в резьбе делает ее негерметичной. Метрические резьбы делятся на резьбы с крупным (основным) и мелким шагом. Резьбы с мелким шагом меньше ослабляют деталь, обладают более высокой динамической прочностью и характеризуются из-за малого угла подъема g винтовой линии повышенным самоторможением. Как крепежные, резьбы с мелким шагом применяются в соединениях, подверженных переменным воздействиям и в тонкостенных деталях. Метрическая резьба обеспечивает лучшее направление винта или гайки в винтовых механизмах из-за малого радиального смещения по сравнению с трапецеидальной резьбой. В механизмах винт-гайка с шагами резьбы до 1 мм применяют только метрические резьбы из-за сложности изготовления с такими шагами ходовых резьб трапецеидального и прямоугольного профилей.

Дюймовая резьба используется для крепежных деталей импортного оборудования, вышедших из строя. Она имеет угол профиля a = 55° и плоскосрезанные вершины треугольного профиля. Параметры резьбы дают в дюймах [один дюйм 1² = 25,4 мм]. Применение дюймовых резьб (кроме трубных) для новых изделий запрещается.

Рис. 5

Рис. 6

Трубная резьба представляет собой мелкую дюймовую резьбу, она обеспечивает беззазорность и плотность резьбового соединения за счет скругления вершин и впадин резьбы (см. рис. 5, б). За номинальный диаметр трубной резьбы принимают внутренний диаметр трубы, а наружный диаметр трубной резьбы больше номинального на величину удвоенной толщины стенки трубы. Например, резьба труб ½ ² используется для труб с внутренним диаметром ½ ², наружный диаметр ее равен 20,96 мм. Используется трубная резьба в трубопроводах и для тонкостенных деталей.

Трапецеидальная резьба (см. рис. 5, в) – основная резьба в механизмах винт-гайка. Ее профиль – равнобокая трапеция с углом a = 30°. Резьба имеет меньшие по сравнению с резьбой треугольного профиля потери на трение, больший КПД, обеспечивает высокую точность осевого перемещения ведомого звена. Широко применяется для реверсивных передач винт-гайка.

Упорная резьба (см. рис. 5, г) имеет профиль неравнобокой трапеции с углом a = 30°. Рабочая сторона профиля имеет угол наклона 3°, КПД этой резьбы выше, чем КПД трапецеидальной резьбы. Рекомендуется применять эту резьбу в механизмах винт-гайка при значительных односторонних осевых нагрузках.

Прямоугольная резьба (см. рис. 5, д) с профилем в форме квадрата имеет самый высокий КПД, так как угол профиля резьбы a = 0. Резьба обладает пониженной прочностью. При износе образуются осевые зазоры, которые трудно устранить. Резьба применяется в малонагруженных передачах винт-гайка (перемещение головок записи и считывания информации в дисководах).

Круглая резьба (см. рис. 5, е) имеет угол профиля a = 30°. Профиль резьбы состоит из дуг, сопряженных короткими прямыми линиями. Резьба не стандартизирована. Характеризуется высокой динамической прочностью, имеет ограниченное применение.

В механизмах винт-гайка применяют трапецеидальные, метрические, прямоугольные и упорные резьбы. Наибольшее применение получили трапецеидальные и метрические резьбы. Трапецеидальную резьбу рекомендуют применять с шагом р > 1 мм, метрическую в механизмах с мелкими шагами (р £ 1,0).

КПД винтовых механизмов рассчитывают по формуле

h = tgg / tg(g + rт), (4)