Коксовая печь - реактор периодического действия, поэтому температура угольной шихты в ней изменяется во времени. Следовательно, изменяется и движущая сила процесса, то есть разность температур между греющими газами и угольной шихтой ∆t= tг - tш. Непосредственно после загрузки шихты tшмала и разность ∆t велика. Поэтому в холодную шихту поступает в единицу времени большее количество теплоты и уголь у стенок камеры начинает коксоваться, в то время как вследствие низкой теплопроводности шихты средние слои остаются холодными. По мере прогрева шихты ее температура возрастает и движущая сила процесса ∆t падает при одновременном повышении температуры по сечению камеры.
Химические превращения при коксовании могут быть сведены к реакциям двух типов: первичным и вторичным.
К первичным реакциям, протекающим в шихте при ее нагревании, относятся:
реакции деструкции сложных молекул;
реакции фенолизации;
реакции карбонизации органической части угля;
реакции отщепления атомов водорода, гидроксильных, карбоксильной и метоксильной ОСН3 групп.
В процессе первичных превращений из угольной шихты выделяются первичный газ и пары первичной смолы и образуется кокс. К вторичным реакциям, которые протекают при контакте выделившихся первичного газа и первичной смолы с нагретой стенкой печи, относятся:
реакции крекинга алканов
СnH2n+2 → CmH2m+2 + CpH2p;
реакции полимеризации алкенов
ЗСnН2n → ∆СnН2n;
реакции дегидрогенизации нафтенов
∆СnН2n → СnH2n-6 + ЗН2;
реакции конденсации ароматических углеводородов, например
2С6Н6 → С10Н8 + С2Н4;
реакции образования карбенов с последующим превращением их в полукокс и кокс.
Продуктом вторичных превращений является сложная смесь газообразных и парообразных при температуре коксования веществ различной природы - прямой коксовый газ (ПКГ). На рис.1.3 представлена схема химических превращений при коксовании.
Рисунок 1.3 Схема химических превращений при коксовании
Последовательность процессов, протекающих в шихте при повышении температуры в печи, может быть представлена в следующем виде:
250°С - отщепление Н2О, СО, СО2, Н2;
300°С - начало выделения КУС, выделение пирогенетической воды;
350-500°С - пластификация угольной шихты;
500-550°С - разложение органической части угля с выделением первичного газа и паров первичной смолы, спекание твердого остатка с образованием полукокса;
600-100°С - разложение полукокса и полное выделение летучих веществ;
100°С - упрочнение твердой массы и образование кокса.
Процесс коксования осуществляется в коксовых печах - реакторах периодического действия. Современная коксовая печь представляет сложное теплотехническое сооружение, состоящее из:
камеры для загрузки угольной шихты;
обогревательного простенка, в котором расположены 28-32 отопительных канала (вертикала), где происходит горение нагретого газообразного топлива для обогрева стенок камеры, системы газораспределительных и воздухоподводящих каналов для подачи газа и воздуха для отопления печи, регенераторов для подогрева газообразного топлива и воздуха, подаваемых в печь, и для отвода продуктов горения топлива;системы отвода летучих продуктов коксования.
Для снижения тепловых потерь на излучение, удобства эксплуатации и повышения производительности труда коксовые печи объединяют в батареи, состоящие из п камер и п + 1 простенков. Число печей в батарее определяется конкретными условиями производства, главным образом возможностью рационального использования машин общего назначения, и равно обычно 68-18.
Камера коксовой печи по конфигурации представляет параллелепипед, размеры которого зависят от ряда факторов. Ширина камеры определяется толщиной слоя коксуемой шихты (1.3.3), высоту и длину выбирают исходя из обеспечения равномерности обогрева камеры, качества шихты, размеров территории цеха и др. Камеры современных печей имеют длину 14-16 м и высоту 4,3- 1,0 м. На рис.1.4 приведена схема коксовой печи.
Рисунок 1.4. Схема коксовой печи:1 - бункера для загрузки шихты; 2 - стояк для отвода летучих продуктов; 3 - передняя дверца; 4 - задняя дверца; 5 – коксовыталкиватель.
В верхнем перекрытии камеры есть загрузочные отверстия для подачи шихты и отверстия для отвода летучих продуктов коксования (прямого коксового газа), которые через газоотвод поступают в газосборник, откуда направляются в цех улавливания. С торцов камера закрывается дверями, которые снимаются по окончании коксования для выдачи готового кокса из камеры с помощью коксовыталкивателя.
Конструкция коксовой камеры полностью обеспечивает ее герметичность и исключает подсос наружного воздуха и отопительных газов. Каждая печь имеет по два регенератора, расположенных под камерой. Газообразное топливо подается в каждый простенок батареи через распределительный газопровод. Батарея коксовых печей обслуживается единым комплексом механизмов для загрузки угольной шихты и выгрузки готового кокса, в который входят углезагрузочный вагон, коксовыталкиватель, разравнивающая шихту штанга, машина для съема дверей камеры и коксотушильный вагон.
В коксохимическом производстве применяются печи, различающиеся конструктивными особенностями (расположение камер, способ подвода газа и воздуха, способ утилизации теплоты продуктов горения топлива и др.) и технологическим режимом (последовательность подъема температуры, состав обогревающего газа и др.). Однако все они могут быть сведены к двум типам: печи с перекидными каналами (ПК) и печи с рециркуляцией продуктов горения (ПВР).
В печах ПВР для улучшения равномерности обогрева по длине и высоте камер в вертикалах осуществляется рециркуляция продуктов горения путем подачи части их в пламя горящего газа, что замедляет процесс его горения и удлиняет факел пламени. Печи этого типа являются наиболее распространенными. В табл.1.3 приведены характеристики печей ПВР.
Таблица 1.3 - Характеристики коксовых печей типа ПВР
Vп м3 | Размеры, м | mш, т | . | Пк· т/год | W, мм/ч | ||
Ь | h | / | Ч | ||||
21,6 32,3 41,6 | 0,401 0,410 0,410 | 4,35,51,0 | 14,08 16,00 16,00 | 23,3 23,5 30,6 | 161414 | 1291301000 | 21,332,0 |
Vn- полезный объем камеры, b- ширина камеры; h - высота камеры; l- длина камеры; mш- масса загружаемой в камеру шихты с влажностью 0,085 маc. дол.; τк- время коксования; Пк - производительность по коксу с влажностью 0,06 маc. дол.; W - скорость коксования
Процесс коксования состоит из следующих стадий.
1 Загрузка шихты в камеру печи и разравнивание шихты штангой (планиром). Во избежание задымления атмосферы в камере в период загрузки шихты создается разряжение путем инжекции пара, газа или аммиачной воды или с помощью системы отсоса газа из камеры.
2 Коксование. Производительность коксовой печи определяется так называемым периодом коксования - временем от окончания загрузки камеры до выдачи кокса, в течение которого в шихте происходят все изменения, приводящие к образованию кокса и ПКГ. Период коксования τк зависит от ширины камеры, то есть толщины слоя шихты, толщины кладки и материала огнеупоров стенового канала, свойств угольной шихты и температуры в вертикалах печи. С достаточной степенью точности период коксования определяется по формуле
(1.4)где а - коэффициент температуропроводности, м2/ч, а значение величин b, tш и tгприведены для формул 1.2 и 1.3
Приняв для расчета практические значения b = 0,4 м, tш= 1100°С, tг= 1400°С, получим τк = 13 часов, что согласуется с реальным режимом процесса коксования.
Период коксования с добавкой времени на операции загрузки шихты и выгрузки кокса (9-10 минут) называется временем оборота или оборотом печи. Оборот печи сокращается при повышении температуры в вертикалах, уменьшением толщины стенового кирпича и снижении влажности шихты, а также при улучшении организации работ по обслуживанию коксовой батареи.
Газообразным топливом для обогрева коксовых печей служат обратный коксовый газ, доменный газ, их смеси и, значительно реже, смесь доменного и природного газов. Температура продуктов сгорания топлива, следовательно, температура газов, обогревающих стенки камеры tг, определяется как отношение количества поступающего тепла к средней теплоемкости