Смекни!
smekni.com

Підвищення довговічності деталей нанесенням зносостійких покриттів плазмово-порошковим методом (стр. 4 из 6)

Статистичний аналіз експлуатаційної стійкості двигунів у різні часові періоди показав, що більш пізній період (2002 - 2003р.р.) у порівнянні з попереднім (2001 р.) характеризується переважно виходом з ладу деталей за інтенсивним зношуванням. Так, якщо до напрацювання 4000 мото - ч у більше ранньому періоді виходило з ладу » 23% всіх двигунів, що спостерігалися в експлуатації, то в другому (при тому ж самому напрацюванні) цей показник досягав 70%, при гарантії напрацювання (яку дає завод-виробник) до капітального ремонту 6000 мото - ч.

Для підвищення довговічності колінчастих валів, як основної деталі двигуна, здійснювали відновлення з використанням запропонованого складу покриття і технології його нанесення. Порівняльні дослідження таких валів і виготовлених за діючою технологією показали, що перші мають в 1,5 рази вищу зносостійкість.

Методом рентгеноструктурного аналізу показано, що це досягається формуванням у покритті структур мартенситу та залишкового аустеніту, карбідів, оксидів, нітридів. Після експлуатації доля залишкового аустеніту зменшується з 50% до 15%.

При відновленні колінчастих валів нанесенням покриттів плазмово-порошковим методом можливе зниження їхньої втомної міцності через зменшення ефективного перерізу шийок (шліфування й наявність зони термічного впливу).

Виконано розрахунок величини запасу міцності відновленого колінчатого вала V - образного шестициліндрового двигуна СМД - 60.

Розрахунками показано, що на зменшення втомної міцності спряження щока - шийка впливає зниження запасу міцності шатунної шийки. Встановлено припустиму максимальну величину її шліфування перед нанесенням покриття (до 0,15 мм) і зони термічного впливу (не більше 2мм). При досягненні таких значень рекомендується відновлення валу з нанесенням покриття після 2-го ремонтного розміру. Тільки в цьому випадку забезпечується запас міцності шатунної шийки значно вище мінімально припустимого.

Стендові випробування колінчастих валів з нанесеним покриттям, запропонованим плазмово-порошковим методом показали, що максимальне зношування для шатунних шийок (1 - 4) становить 0,002 мм, а для корінних (4) - 0,003 мм. Мінімальне зношування шатунних шийок (2 - 5 й 3 - 6) і корінних (3) не перевищує 0,001 мм.

Випробування колінчастих валів на сільськогосподарських підприємствах Харківської області показали, що зміцнений шар при дотриманні умов, обговорених вимогами на експлуатацію й обслуговування техніки, при використанні якісних мастильних матеріалів, забезпечує стабільність властивостей і структури металу покриття.

Для визначення ймовірності безвідмовної роботи колінчастих валів двигунів СМД – 60 виконано аналіз експлуатаційної стійкості 50 деталей, виготовлених згідно діючої технології, в експлуатації. Оцінено величину зношування корінних і шатунних шийок. Зафіксовано напрацювання до капітального ремонту. Оцінено дисперсію й середньоквадратичне відхилення значень, а також швидкість зношування корінних і шатунних шийок (відповідає інтервалам 11,86´10–3 –16,59´10–3 й 9,36´10–3–12,02´10–3 мкм/мото-год).

Отримано залежність ймовірності безвідмовної роботи колінчастих валів, а також теоретичного й емпіричного значення функцій розподілу напрацювання (розбіжності не перевищують 13%).

Оцінено гамма-процентний ресурс колінчастих валів двигунів СМД – 60, що виходять із ладу через зношування корінних і шатунних шийок. Він склав для нових валів g80% теор = 4100 мото-год й g80% эмп = 4000 мото-год, що нижче норм заявлених заводом-виробником.

Для колінчастих валів зміцнених нанесенням покриттів з розробленого матеріалу з використанням плазмово-порошкового методу гамма-процентний ресурс є в 1,5 рази вищим за нові деталі.

Розроблена технологія нанесення покриттів плазмово-порошковим методом успішно може бути використана не тільки при ремонті сільськогосподарської техніки, але й у різних галузях народного господарства. Показано ефективність цього методу і при відновленні деталей турбін парових та атомних електростанцій. Вибір матеріалу покриття визначається вимогами експлуатації, а параметри попередньої обробки структурою й властивостями деталі.

Використання порошкових композицій на базі заліза легованого системою Ni - Cr - Si – B – Mn –Mo – Cu, забезпечує необхідну довговічність деталей і визначається не тільки покриттям, але й властивостями перехідної зони і термічного впливу, які можливо регулювати набором технологічних операцій і параметрами процесу.

Економічний ефект від впровадження технології відновлення колінчастих валів нанесенням розробленого покриття плазмово-порошковим методом в об’ємі 1000 шт склав 279093 грн.

Розробки впроваджені на Шевченківському РТП, а споживачами відновлених колінчастих валів є Сумська, Полтавська, Харківська та Чернігівська області України.


ЗАГАЛЬНІ ВИСНОВКИ ТА РЕКОМЕНДАЦІЇ

1. На основі аналізу апріорної інформації для підвищення довговічності деталей нанесенням покриттів був обраний плазмово-порошковий метод. Даний метод вигідно відрізняється від інших тим, що може забезпечити зміцнення, а також компенсацію зношеного шару більше 2 мм. Така обробка зберігає прямолінійність, виключає короблення деталей, забезпечує достатнє зчеплення покриття з основою, мінімальну пористість.

Ефективність методу визначається й вибором матеріалу, його хімічного складу, досягнутими властивостями з урахуванням вимог, які регламентуються технічними умовами.

2. На базі розробленої методології й комплексних методів досліджень, планування експерименту та статистичних методів аналізу виявлено вплив складу порошкових композицій на основі заліза на структуру, властивості та зносостійкість покриттів, нанесених плазмово-порошковим методом. Визначено, що при відновленні шийок колінчастих валів найбільша ефективність досягається при використанні композиції, що містить Cr – 3,5 – 4,5%, Ni – 1,8 – 2,2%, B – 0,9 – 1,5%, C - 0,3 – 0,42%, Si – 0,8 – 1,3%, Mn - 1,5 – 2,3%, Mo - 0,1 – 0,5%, Cu – 0,85 – 1,3%, а для шипів хрестовин карданних валів Cr - 5,0 – 5,5%, Ni - 1,5 – 2,0%, B - 1,0 – 1,8%, C - 0,3 – 05%, Si - 1,2 – 1,6%, Mn - 2,0 – 2,5%, Mo - 0,15 – 0,35%, Cu – 0,5 – 1,1%.

3. Покриття запропонованого складу, які нанесені плазмово-порошковим методом мають наступні зони: наплавлення, перехідну та термічного впливу. Перша з них визначає зносостійкість деталі, друга - міцність покриття і третя впливає на втомлену міцність деталі при експлуатації. Дослідженнями показано вплив довжини перехідної зони на міцність зчеплення покриття з основою та стабільну роботу деталі в експлуатації.

4. Показано, що найбільш висока зносостійкість деталей забезпечується при формуванні в структурі спеціальних карбідів Ме23С6, нітридів (Fe2N) а також легованого цементиту. Частка фази, яка зміцнює властивості шару становить 6 – 8%. Методом мікрорентгеноспектрального аналізу встановлено, що Ме23C6 містить до 43,9% Cr, а Ме3C – до 13% Cr.

5. Якість покриття, яке наносили на шийки колінчастих валів, оцінювали по однорідності розподілу компонентів по перерізу покриття й перехідної зони. Так, межі зміни концентрації елементів у покритті не перевищують для Cr - 3,66%, Ni - 1,798%, Mn - 1,208%, Si - 0,714%, Mo - 0,106%, перехідному шарі (на глибині 90 мкм від зони сплавлення) Cr - 4,0%, Ni - 1,97%, Mn - 1,32%, Si - 0,88%, Mo - 0,11%.

Міцність зчеплення покриття з основою становить не нижче 950 МПа, що відповідає вимогам ТУ.

6. Методом планування експерименту показано, що параметри обробки істотно впливають на структуроутворення. Показано, що найбільший вплив на рівень мікротвердості при використанні запропонованого состава покриття має сила струму. Так, при зміні її величини від 260 до 200 А твердість знижується на 11,33%. При зміні швидкості обробки деталі в прийнятному інтервалі V= 2,8 - 3,8 об/хв особливий вплив на структуроутворення не виявлено.

У випадку обробки з попереднім підігрівом у перехідній зоні в порівнянні з основним металом відзначалося підвищення концентрації всіх хімічних елементів за рахунок інтенсифікації дифузійних процесів. Дослідження показали, що попередній підігрів деталі вирівнює концентрацію компонентів у зоні покриття - перехідний шар, що позитивно позначається на забезпеченні заданої міцності зчеплення.

Отримано залежність впливу температурного режиму обробки на зміну структури покриття та перехідної зони. Показано, що при обробці параметрами I = 260 А и V = 3,8 об/хв призводить до перегріву та формуванню відманштетової структури у перехідній зоні.

7. При обробці шипів хрестовин струмом в інтервалі значень 120 - 150 А падіння концентрації всіх елементів було істотним: для Ni складало 29,47%, а Cr - 26,53%. Це призводить до неоднорідності структури та властивостей покриття й сприяє нерівномірному зношуванню відновленої поверхні деталі.

При нанесенні покриттів з використанням струму в діапазоні 150 - 180 А концентрація хімічних елементів знижувалася, у порівнянні з першим інтервалом, незначно й не перевищувала 0,58% й 5,55% для Ni та Cr відповідно.

8. Для вибору параметрів обробки розроблено метод і виконано розрахунок температурних полів. Використано новий підхід, що враховує істотні конвективні теплові потоки в рідкій фазі. Побудова такої моделі дозволяє прогнозувати структуру та властивості відновленого шару і деталі, та гнучко змінювати режими обробки для одержання необхідних її властивостей.

Оптимальними параметрами обробки для нанесення покриттів на шийки колінчастого валу СМД – 60 (Сталь 45, Æ 86мм) є: струм I = 230 A, швидкість обертання деталі V=2,8 об/хв. Ефективним є попередній відпал плазмовим струменем.

9. Запропоновано порошкові композиції для відновлення шийок колінчастих валів і шипів хрестовин карданних валів.

При нанесенні покриттів ураховували спосіб їхнього виготовлення. Оскільки при виробництві хрестовини піддаються цементації, то їх перед відновленням відпалювали при температурі t = 850°С для зняття напруг і зниження вуглецю в збереженому цементованому шарі.