Московский государственный технический университет
Калужский филиал
Факультет КМК
Кафедра К2-КФ
КУРСОВОЙ ПРОЕКТ по курсу:
«Объемные гидромашины и гидропередачи»
Тема: «Пластинчатый гидромотор»
Расчетно-пояснительная записка
Содержание
Введение
1. Описание конструкции гидромотора
2. Гидравлический расчет
2.1Выбор схемы гидромотора
2.2 Определение мощности гидромотора
2.3 Определение среднего расхода гидромотора
2.4 Определение рабочего объема гидромотора
2.5 Определение идеального момента
2.6 Определение диаметра вала
2.7 Определение размеров статора и ротора
2.8 Определение координат кривой статора
2.9 Определение контактных напряжений и геометрических размеров верхней кромки пластины
2.10 Расчет сил действующих на пластину
2.11 Расчет распределительных дисков
2.12 Определение размеров нагнетательного и сливного трубопровода и каналов
2.13 Выбор подшипников
2.14 Выбор расположения центра качения коромыслообразных пружин
2.15 Расчет пружин для предварительного прижима, заднего плавающего диска
2.16 Расчет на прочность корпусных винтов
3. Балансовый расчет
3.1 Определение механического КПД
3.2 Определение гидравлического КПД
3.3 Определение объемного КПД
3.4 Определение полного КПД
Литература
Введение
Гидравлические машины предназначены для преобразования различных видов механической энергии в энергию потока жидкости. По принципу преобразования энергии гидромашины делятся на объемные и динамические.
Объемными называются гидромашины, принцип действия, которых основан на попеременном заполнении и опорожнении ограниченных пространств, периодически сообщающихся с местами входа и выхода рабочей жидкости. К классу ОГМ относятся гидронасосы-генераторы энергии потока жидкости и гидродвигатели-потребители энергии.
Объемные гидродвигатели с неограниченным вращательным движением выходного звена называются гидромоторами.
Спроектированный гидромотор принадлежит к группе роторно-поступательных ОГМ, у которых подвижные рабочие звенья совершают сложное движение: вращательное и возвратно-поступательное. Рабочие звенья имеют форму пластин. Различают пластинчатые гидромоторы однократного и двукратного действия.
В машинах двойного действия за один оборот вала происходят два полных цикла работы, т. е. два процесса нагнетания.
Процесс всасывания и нагнетания рабочей жидкости происходит с помощью распределительных устройств, обеспечивающих соединение рабочих камер с магистралями гидросистемы.
Насосы и гидромоторы двойного действия выполняются только как нерегулируемые. Давление рабочей жидкости, действующее на ротор в радиальном направлении, уравновешивается, опоры машины разгружаются, и вал ее передает только крутящий момент.
Пластинчатые гидромоторы предназначены для применения в реверсивных регулируемых и нерегулируемых гидроприводах, в которых требуется частые включения, автоматическое и дистанционное управление.
По сравнению с электромоторами постоянного и переменного тока пластинчатые гидромоторы имеют значительно меньшие габариты, вес и моменты инерции. Большая величина углового ускорения определяет значительно меньшие времена разгона и торможения гидромоторов.
1. Описание конструкции пластинчатого гидромотора
В соответствии с заданием по курсовому проекту предусматривается проектирование пластинчатого гидромотора двукратного действия на следующие параметры:
Крутящий момент М = 5 кг*м
Давление р = 6,3 МПа
Частота вращения n = 1450 об/мин
Исходя из заданных требований, был выбран прототип-гидромотор МГ16-1.
В пластинчатом гидромоторе применяются стальные распределительные диски, что в сочетании с автоматически прижимаемым давлением нагнетания, плавающим распределительным задним диском обеспечивает высокую износостойкость и длительный срок службы гидромотора. Эта особенность конструкции делает пластинчатый гидромотор менее чувствительным к загрязненности рабочей жидкости.
Автоматический прижим заднего диска и поджим пластин к статору давлением рабочей жидкости осуществляется при обоих направлениях вращения вала гидромотора, что достигается применением специального золотника, расположенного в осевом канале заднего диска.
Гидромотор работает следующим образом. Рабочая жидкость из напорной магистрали попадает в подковообразный канал корпуса 2, откуда через окно переднего диска 5 попадает на пластины 9 ротора 7. При этом ротор 7 вместе с валом 3 поворачивается в направлении против часовой стрелки, если смотреть со стороны вала.
Слив рабочей жидкости происходит через окна в кольцевом выступе заднего диска 4 далее через отверстие крышки 1. Вал 3 вращается в двух шарикоподшипниках 20, 21. На валу 3 на шлицах расположен ротор 7. В пазах ротора 7 перемещаются пластины 9, оставаясь постоянно прижатыми к внутренней поверхности статора 6.
Первоначальный прижим пластин 9 к статору 6 осуществляется при помощи пружин 10, выполненных в виде коромысла, причем каждая пружина прижимает пару пластин, расположенных под углом 90° одна по отношению к другой, так что при вращении ротора насколько одна пластина выходит из паза, настолько другая входит в паз ротора и, следовательно, пружина в процессе работы гидромотора не деформируется.
Ротор 6 вращается между двумя стальными распределительными дисками: передним диском 5 со стороны корпуса 2 и задним диском 4 со стороны крышки 1.
Кольцевые выступы одинакового диаметра в заднем диске 4 входят по скользящей посадке в отверстие крышки 1. Полость за задним диском 4 соединена с напорной магистралью посредством отверстий и пазов в заднем диске 4.
Автоматический прижим заднего диска 4 достигается созданием давления в полости между задним диском 4 и крышкой 1. Первоначальный прижим заднего диска 4 осуществляется тремя пружинами 26.
Под действием давления рабочей жидкости, поступающей со стороны радиального отверстия в заднем диске золотник 14 отодвигается до упора в пробку 15, т.к. полость с другой стороны золотника связана со сливной магистралью. Из полости за задним диском давление передается через отверстие и прижимает пластины 9 к статору 6.
В данном гидромоторе возможно изменение направления вращения вала мотора, т.е. гидромотор реверсивен.
Уплотнение между полостями заднего диска 4 создается из-за малого зазора между кольцевым выступом заднего диска 4 и отверстием в крышке 1.
От наружных утечек на валу 3 предохраняет манжета 22 из маслостойкой резины. Через дренажное отверстие в корпусе 2 происходит слив утечек из корпуса. Уплотнение между корпусом 2 и крышкой 1, а также по наружному диаметру статора 6, достигается с помощью резинового кольца 27.
2. Гидравлический расчет проточной части
2.1 Выбор принципиальной схемы гидромотора
Выбор схемы гидромотора производим ориентируясь на величину давления
. При такой величине давления ( ) не требуется разгрузка пластин.Рис. 1. Принципиальная схема
Первоначальный принудительный прижим пластин к статору производится коромыслообразными пружинами и давлением нагнетаемой жидкости, подводимой в канал под пластины.
2.2 Определение мощности гидромотора
,где
— крутящий момент на валу гидромотора; — угловая скорость; — число оборотов вала гидромотора.2.3 Определение среднего расхода гидромотора
,где
– давление гидромотора.2.4 Определение рабочего объема гидромотора
а) По известному расходу гидромотора
и числу оборотов находим величину рабочего объема в первом приближении:б) По опытным данным значение объемного и полного КПД примем
в) Определяем величину идеального расхода и рабочего объема гидромотора:
2.5 Определение идеального момента гидромотора
2.6 Определение диаметра вала гидромотора.
В пластинчатых машинах двукратного действия можно пренебречь изгибающим моментом, т.к. он ничтожно мал по сравнению с крутящим моментом. Значение крутящего момента можно принять постоянным. Валы данных машин изготовляют из стали 45, имеющей
. ,где
– потребляемая гидромотором мощность;