с условиями
Фактическое отыскание решения сформулированной задачи требует в общем случае привлечения численных методов. Для того чтобы выяснить некоторые важные общие свойства решений, рассмотрим два характерных частных случая.
Характерное значение коэффициента капиллярного переноса А2 значительно больше, чем характерное значение коэффициента диффузии D. Поэтому последний член в уравнении содержит множителем малый параметр D/A2 < 1. Пренебрегая этим членом, получаем для С уравнение первого порядка
Как и при "обычной" капиллярной пропитке, оно растет пропорционально корню из времени — факт, являющийся следствием автомодельности задачи.
Как известно, скорость продвижения фронта капиллярной пропитки в зависимости от конкретных свойств функций фазовых проницаемостей и капиллярного давления может быть конечной или бесконечной. Примем здесь, что эта скорость конечна и существует выраженный фронт пропитки ns:
Равенство возможно только при n* < ns. Это означает, что при капиллярной пропитке гидрофильной среды, как и при закачке раствора активной примеси, фронт примеси отстает от фронта воды, а перед примесью движется чистая вода. Видно, что отставаниеобусловлено теми же двумя факторами, что и при закачке: адсорбцией
(а (с°) > 0) и смешением с погребенной водой (so > 0). Если Т - сред няя водонасыщенность в зоне, занятой примесью, то порядок величины отставания
Поэтому если примесь изменяет кривую капиллярного давления (функцию Леверетта J), то скачок концентрации сопровождается скачком насыщенности такой величины, что капиллярное давление оказывается непрерывной функцией координат и времени.
Отмеченные выше особенности капиллярной пропитки гидрофильной пористой среды водным раствором активной примеси видны на рис. где показаны результаты модельных расчетов.
Обратимся теперь к другому важному частному случаю, а именно, рассмотрим процесс пропитки гидрофобной пористой среды раствором гидрофилизирующего ПАВ. Иными словами, предполагается, что пер воначально поверхность пор преимущественно смачивается нефтью (cosq < 0), однако поверхностно-активное вещество, растворенное в воде, способно, адсорбируясь на поверхности пор, превратить ее в гидрофильную (cosq > 0). Количественно эффект будет зависеть от величины адсорбции, а последняя, в свою очередь, в силу условия ло кального термодинамического равновесия, от концентрации ПАВ в воде. Поэтому далее принимается, что при некоторой пороговой концентра ции ПАВ с* происходит переход от гидрофобной среды к гидрофильной. Этот переход в гидродинамических уравнениях проявляется в изменении знака капиллярного давления рс: оно отрицательно для гидрофобной среды и положительно для гидрофильной, причем, как легко убедиться из простейших модельных рассуждении, производная ¶p/¶s отрицательна как для гидрофильной, так и для гидрофобной среды.
Поэтому далее при модельных расчетах берется функция pc(s, с) вида
Это соотношение означает, что с точностью до малых величин А2 /D капиллярный поток воды постоянен по глубине зоны пропитки.
Пусть значение x =x* отвечает достижению критической концентрации с*. Применяя (5.53) к области x > x* имеем, очевидно, q = 0 (отсутствие потока на бесконечность). Это означает, что в области пepeд фронтом критической концентрации движение практически отсутствует
Чтобы понять, каким образом определяется поток q в области за фронтом критической концентрации, пренебрежем временно зависимостью коэффициентов в уравнении для переноса примеси от S, и допустим, что речь идет о чистой диффузии. Тогда решение имеет хорошо известный вид