Смекни!
smekni.com

Повышение качества полиэтиленовых газопроводных труб (стр. 7 из 14)

Материалом удовлетворяющим этим требованиям является полиэтилен среднего давления ПЭ 100 (производитель ОАО «Ставролен»).

Гранулированный ПЭ поступает на производство в полиэтиленовых мешках с сертификатом качества предприятия – изготовителя. Использование вторичного полиэтилена для производства газопроводных труб недопустимо.

ПЭ выпускается в виде гранул черного цвета размером 2 – 5 мм. Показатели качества должны соответвтвовать требованиям, указанным в табл. 3

Вода необходимая для охлаждения труб общая жесткость которой должна составлять не более 7,0 мг-экв/л.

Вспомогательные материалы приведены в табл. 4


Таблица 3

Качественные показатели ПЭ марки ПЭСП (ПЭ 100) производитель ОАО «Ставролен»

№ п/п Наименование показателя Значение показателей
1 Плотность при 23 ºС, г/см3 0,945-0,951
2 Показатель текучести расплава, г /10 мин при 5 кгс 0,7-1,1
3 Разброс показателя текучести расплава в пределах партии, % не более 10
4 Относительное удлинение при разрыве, % н/м 600
5 Нижний допуск предел длительной прочности, МПа 8,0
6 Содержание сажи, % не более 2,0-2,50
7 Распределение сажи 1-2
8 Термостабильность при 210ºС, час, не менее 20
9 Стойкость к медленному распространению трещин при 80 ºС и начальное напряжение в стенке трубы МПа, не менее 165
10 Стойкость при постоянном внутреннем давлении при 20 ºС и напряжение трубы не менее 10,7МПа 75
11 Предел текучести при растяжении (кгс/см2), МПа 17,0 (170)
12 Стойкость к газовым составляющим при 80 ºС и начальном напряжении в стенке трубы 2 МПа, час, не менее 20

Таблица 4

Характеристика вспомогательных материалов.

Наименование материала Назначение материала Обозначение документа
1 2 3
1 .Сетка металлическая№452.Ветошь обтирочная3.Порошок стиральный4.Смазка пластичная ГОИ-50П5.Картон толщиной 3мм6.Перчатки из хлопчатобумажного полотна7.Рукавицы типа АТ-68.Пластина резиновая толщиной 4 мм9. Заглушки полиэтиленовые10.Брус деревянный Фильтрация расплавленного полиэтиленаЧистка оборудованияМытье ванн охлажденияЧистка головки экструдера и дорнаИзготовление ярлыковПредохранение рукПредохранение рукВырубка уплотнительных колец в ванны охлажденияДля закрытия концов трубДля складирования труб ГОСТ 3826-82ГОСТ 3826-82По соответствующей нормативной документацииГОСТ 3276-89ГОСТ 3251-91 ГОСТ 7933-89 ГОСТ 5007-87ГОСТ 12.4.010-75ТУ 38.105823-88ГОСТ 8486-86

Готовой продукцией являются трубы для газопроводов из полиэтилена (ПЭ 100) с техническими характеристиками:

¾ Наружный диаметр, мм 110 ± 1,0

¾ Толщина стенки, мм 6,3 ± 1,0

¾ Овальность, мм не более 6,6 + 0,8

(в отрезках) 2,2

¾ Внешний вид гладкая наружная и внутренняя поверхность

¾ Цвет черный с желтыми продольными маркировочными полосами по окружности трубы

¾ Относительное удлинение при разрыве, % не менее 350

¾ Изменение длины труб после прогрева, % не более 3,0

¾ Стойкость при постоянном внутреннем 100

давлении при 20 ºС, час, не менее (при σнач в стенке трубы 10 МПа)

¾ Стойкость при постоянном внутреннем давлении 165

при 80 ºС, в час, не менее (при σнач -4,6 МПа)

¾ Стойкость к газовым составляющим при 80 ºС и начальном напряжении в стенке руб 2 МПа, час, не менее 20

¾ Термостабильность труб при 200 ºС, мин, не менее 20

¾ Стойкость к быстрому распространению трещин для труб с номинальной толщиной стенки 15 мм или при максимальном рабочем давлении трубопровода 0,4 МПа для всех диаметров Мор/2,4

1.4 Описание технологического процесса

Процесс изготовления труб основан на непрерывном выдавливании расплава через кольцевую щель формующей головки с последующим калиброванием, охлаждением и отводом трубы в соответствующие приемные устройства. Методом экструзии можно изготавливать трубы диаметром от десятых долей миллиметра (капиллярные трубки) до 500мм и более.

Процесс изготовления труб состоит из следующих технологических

операций: [19,20]

1) подготовка сырья;

2) плавление и гомогенизация расплава;

3) формование профиля трубы из расплава;

4) калибрование трубы;

5) охлаждение трубы;

6) намотка или резка;

7) маркировка.

Исходный материал из бункера для хранения направляется в сушилку гранул 1 для удаления поверхностной влаги из полимера. Гранулы полимера загружаются в бункер экструдера 2, где они расплавляются и выдавливаются через формующую трубную головку 3. Трубчатый профиль поступает внутрь калибровочной насадки 4, где частично охлаждается и приобретает необходимые размеры. Для прижатия расплава к стенкам калибрующей насадки внутрь трубы подводится сжатый воздух или создается вакуум между трубой и насадкой. Затем труба 7 охлаждается в ванне с двумя температурными зонами 5 и 6, проходит маркировку в устройстве 8, протягивается тянущим устройством 9 , разрезается пилой 10 и подается на приемный стол (штабелирующее устройство) 11. Бракованные изделия измельчаются в дробилке 12. (лист1)

Плавление полимера и гомогенизация расплава

Подготовка расплава к формованию проводится на шнековых экструдерах. При плавлении полимера и гомогенизации расплава требуется обеспечить хорошую однородность расплава по температуре, а также полное плавление гранул, чтобы исключить попадание в изделие нерасплавленных частиц полимера. В противном случае качество изделий понижается. Кроме того, чтобы происходило качественное формование расплава и последующее сохранение заданной формы, полимер должен быть нагрет до определенной температуры. Экструзионный агрегат должен работать при частоте вращения шнека, обеспечивающей заданную скорость выхода расплава и определенное избыточное давление на входе в формующую головку.

Скорость экструзии обычно выбирается из условия исключения эластической турбулентности (дробления расплава и появления шероховатости) или в зависимости от скорости охлаждения трубы с учетом длины охлаждающей ванны.

Формование профиля трубы.

Формование осуществляется за счет течения расплава полимера через кольцевую щель головки. При переработке ПЭВП, имеющего линейное строение макромолекулы ориентируются по направлению течения полимера, а максимальная прочность обеспечивается в поперечном направлении или под некоторым углом к направлению действия напряжений сдвига.

Необходимо учитывать также, что при увеличении скорости может появиться шероховатость поверхности, так как при напряжениях сдвига, превышающих силы адгезии расплава, происходит периодический срыв расплава с поверхности формующего канала.

При формовании профиля трубы расплав из головки выходит не свободно, а отводится с помощью тянущего устройства. Если расплав отводится со скоростью большей, чем скорость выхода расплава, происходит уменьшение толщины стенки трубы и повышается осевая ориентация макромолекул. В зависимости от степени вытяжки расплава увеличивается усадка в продольном направлении. При этом в тангенциальном направлении при нагревании труб, изготовленных с вытяжкой, наблюдается не уменьшение, а увеличение размеров. Формование профиля трубы происходит в канале, образованном дорном и формующим кольцом, закрепленным фланцем и болтами. Осевое течение расплава осуществляется под действием перепада давления в головке.. С увеличением частоты вращения дорна значительно уменьшается также относительное удлинение при растяжении вдоль направления экструзии и возрастает в тангенциальном. Таким образом, проявляется одинаковая зависимость разрушающего напряжения и относительного удлинения от частоты вращения дорна. Прочность на гидравлический разрыв при этом увеличивается на 20 — 25%. При исследовании физико-механических свойств образцов установлено, что относительное удлинение изделий, получаемых при осевом течении расплава в направлении экструзии, на 12% ниже, чем в перпендикулярном. В целом изменение разрушающего напряжения и относительного удлинения соответствуют друг другу. Выявлено, что повышение производительности экструдера приводит к увеличению анизотропии прочности труб, т.е. происходит уменьшение прочности вдоль направления экструзии, тогда как по периметру трубы прочность повышается. Влияние температуры на изменение анизотропии незначительное, т.е. с повышением температуры экструдата наблюдается не большое увеличение прочности. При выборе режима экструзии нужно оперировать не скоростью вращения дорна, а напряжением сдвига, возникающего при течении расплава в формующем канале.

При гидравлических испытаниях образцов труб, изготовленных с вращающимися формующими элементами они выдерживают большее давление, чем обычные трубы. При гидравлических испытаниях труб на стенде установлено, что трубы, изготавливаемые с вращением дорна, разрушаются с образованием разрыва не вдоль трубы, как обычно, а поперек. Кроме того, значительно увеличивается долговечность труб: испытания до разрушения они выдерживают во времени примерно в два раза дольше, чем трубы, изготовленные при неподвижном дорне.

Калибрование труб

Для придания профилю экструдата заданных размеров и исключения его деформации в охлаждающем устройстве трубы калибруют, т.е. предварительно охлаждают с обеспечением расплаву определенной конфигурации и размеров.

Трубчатая заготовка расплава выдавливается из головки и поступает внутрь металлической гильзы калибратора. При подаче сжатого воздуха внутрь трубы происходит частичное раздуваниеподиаметру, вследствие чего труба на выходе из головки плотно прилегает к охлаждаемым стенкам калибрующей гильзы. Чтобы не произошло разрушения (раздувания) экструдата, насадка в данном случае крепитсявплотную к головке, а в рубашку калибрующей насадки подается охлаждающая жидкость. Для исключения прилипания расплава, гильза насадки охлаждается до температуры, которая всегда должна быть ниже температуры стеклования или плавления. При этом на поверхности трубы образуется слой твердого полимера, который после выхода из насадки должен выдерживать внутреннее давление воздуха, а также силы трения, возникающие в насадке.