Смекни!
smekni.com

Повышение надежности и долговечности работы манжетных уплотнений валов автомобилей ВАЗ (стр. 5 из 14)

Для нахождения оптимальных параметров предложенный метод обработки был проведен в производственных условиях двухфакторный многоуровневый эксперимент (52). При обработке полученных данных при проведении эксперимента были найдены оптимальные параметры обработки процесса (при выглаживании шейки Æ 28 мм оптимальной силой прижатия инструментов является F=6350 Н, число совершаемых оборотов детали в процессе обработки N=8; при обработки шейки Æ 80 мм – F=9000 Н, N=6). Также была получена полиномиальная зависимость влияния основных параметров обработки (F, N) на шероховатость обработанной поверхности:

при обработке шейки Æ28 мм:

,

а при обработке шейки Æ80 мм:

,

где F – нагрузка, прикладываемая к каждому инструменту, Н (X1); N – число совершаемых оборотов детали в процессе обработки, об (X2).

Более подробные результаты эксперимента представлены в [4, 34].

Таблица 3.1

Результаты замеров обработанных поверхностей

№детали
Диаметр
Шейки, мм
Ra, мкм(исходная) Режимы обработки Результаты
Q кгс/см2 F, Н N Ra, мкм , мм
1 Æ28 0.93 20 6800 10 0.26 0.0024
Æ80 0.5 15 4500 10 0.26 0.0018
2 Æ28 0.9 35 12000 2.5 0.28 0.0022
Æ80 0.55 25 7500 2.5 0.27 0.0019
3 Æ28 0.87 25 8500 5 0.24 0.0027
Æ80 0.52 20 6000 5 0.27 0.002
4 Æ28 0.94 25 8500 9 0.23 0.002
Æ80 0.55 20 6000 9 0.24 0.0016
5 Æ28 0.91 35 12000 3 0.25 0.0014
Æ80 0.58 30 8900 3 0.28 0.0019
где F – сила прикладываемая к инструментам; N – число совершаемых оборотов за время обработки (для широкого выглаживания); Ra – шероховатость обработанной поверхности; Q – давление в гидросистеме.

3.2 Экспериментальные исследования изменения микротвердости в приповерхностном слое обработанной детали

Для исследования изменения микротвердости приповерхностном слое шеек коленчатого вала обработанных широким выглаживанием были отобраны валы, сальниковые шейки которых обработанны при следующих режимах: Æ80 мм – сила прижатия инструмента к обрабатываемой поверхности 12000 Н, за время обработки было совершено 3 оборота детали; Æ28 мм – сила прижатия инструмента к обрабатываемой поверхности 8900 Н, за время обработки было совершено 3 оборота детали. Замеры микротвердости осуществлялись на микротвердомере ПМТ-3. Результаты измерений представлены на рис. 3.2.

Таблица 3.2

Распределение микротвердости в приповерхностном слое детали, обработанной широким выглаживанием

Глубина измерения, мкм Значение микротвердости шейки Æ28 мм Глубина измерения, мкм Значение микротвердости шейки Æ80 мм
30 1005 30 752
60 891 60 677
90 752 90 612
120 713 120 412
150 643 150 396
180 328 180 353
210 317 210 353
240 317 240 317
270 317 270 317
300 317 300 317

Из таблицы 3.2. видно что обработка выглаживанием дает прирост твердости на поверхности в 2…3 раза, при том, упрочнение шейки Æ28 мм происходит более эффективно, это связано с тем, что скорость обработки данной шейки меньше, чем при обработке шейки Æ80 мм (вопрос о влиянии скорости выглаживания на прирост твердости обработанной поверхности рассмотрен в п. 2.3).

3.3 Испытания инструментов на стойкость при широком выглаживании

Для широкого внедрения процесса выглаживания массовое в производство важно изыскать более дешевые и легко обрабатываемые инструментальные материалы. Инструментом для классического (с продольной подачей) выглаживания является алмаз (около ¾ карата) с тщательно доведенной рабочей сферической частью (радиус сферы 1,2 – 1,3 мм). Он вдавливается в обрабатываемую поверхность и при перемещении вдоль нее улучшает чистоту поверхности за счет пластического течения металла, а также упрочняет поверхностный слой детали. Алмаз отличается высокой стойкостью, однако, его экономически нецелесообразно использовать при изготовлении широких выглаживатель, так как он очень дорог, а затраты на инструментальный материал при изготовлении широких выглаживателей гораздо больше, чем при изготовлении классических.

Для этого был проанализирован ряд инструментальных материалов: титанокобальтовые – Т30К4, Т15К6, Т14К8, Т5К10, вольфрамокобальтовые – ВК2, ВК3М, ВК4, ВК6М, ВК8 и титанотанталокобальтовые свердые сплавы – ТТ10К8А, ТТ10К8Б, минералокерамика ЦМ-332 [23]. С точки зрения доступности и распространенности особый интерес представляют такие сплавы как: Т14К8, Т30К4, ВК8, ВК6. Был проведен ряд экспериментов на стойкость данных материалов, который выявил, что наиболее экономически эффективно применять в качества инструментального материала при изготовлении широких выглаживателей вольфрамокобальтовые твердые сплавы ВК8, ВК6. Титанокобальтовые сплавы обладает несколько большей износостойкостью, чем вольфрамокобальтовые, однако они и более хрупкие в результате чего чаще подвергались разрушению («подвергались выкрашиванию»), в то время как вольфрамокобальтовые сплавы стояли до полного износа и после доводки алмазной пастой могли использоваться повторно.

Сплав ВК8 на данный момент времени используется в качестве основного материала при изготовлении широких выглаживателей и был использован для проведения стойкостных испытаний в производственных условиях. Испытания на стойкость проводились при следующих условиях:

- обработке подвергались сальниковые шейки коленчатого вала 2112-1005020 (см. п. 3.1.);

- параметры обработки – сила прижатия каждого инструмента к обрабатываемой поверхности 8000 Н, за время обработки совершалось 3 оборота детали;

- исходная шероховатость на шейки Æ28 мм – Ra=1,2…1,5 мкм, на шейки Æ80 мм – Ra=0,8…0,9 мкм;

- износостойкость оценивалась в метрах пройденного пути инструментами за общее время обработки, критерием износа инструмента считался выход шероховатости обработанной детали за рамки допуска.

Результаты испытаний представлены на рис. 3.1-3.2. График 1 на обоих рисунках обозначает сплав ВК8 без покрытий. Обработка велась с подачей СОЖ РЖ8. График 2 обозначает сплав ВК8 с напылением нитрида титана. График 3 обозначает сплав ВК8 с напылением нитрида титана в условиях ассистирования газовой плазмой.

Из графиков видно, что инструменты простояли достаточно долгое время (около 1200 деталей, что соответствует 3 сменам работы и весьма приемлемо для массового производства). Однако инструментам требуется некоторое время для приработки, что явно выражено на всех графиках.


Рис. 3.1. Результаты стойкостных испытаний при обработке шейки Æ80 мм:

1 – ВК8; 2 – ВК8 с напылением TiN, 3 – ВК8 с напылением TiN в условиях ассистирования газовой плазмой;

НД – нижний допуск по шероховатости; ВД – нижний допуск по шероховатости

Рис. 3.2. Результаты стойкостных испытаний при обработке шейки Æ80 мм:

1 – ВК8; 2 – ВК8 с напылением TiN, 3 – ВК8 с напылением TiN в условиях ассистирования газовой плазмой;

НД – нижний допуск по шероховатости; ВД – нижний допуск по шероховатости

В целом эксперимент проходил в 3 этапа.

На первом этапе использовались инструменты, рабочая часть которых изготовлена из твердого сплава ВК8 (радиус рабочей части инструмента R»1,5 мм, шероховатость Ra=0,06…0,07 мкм). На данном этапе были получены весьма приемлимые результаты. Стойкость инструментов, как уже было сказано, составила около 1200 деталей.

На втором этапе была поставлена задача – повысить стойкость инструментов и попытаться провести процесс обработки без СОЖ путем нанесения на поверхность инструмента износостойкого покрытия нитрида титана TiN. Покрытие наносилось при следующих условиях: предварительная очистка поверхностей осуществлялась аргоном, температура окружающий среды при нанесении покрытий составляла 450°С, конденсация титана происходила с двух катодов в течении 40 минут. Азот подавался в камеру в виде газа N2 и ионизировался на поверхности титана. Глубина покрытия при этом достигала до 6 мкм. Результаты испытаний оказались неудовлетворительными. Это можно объяснить наличием так называемой «капельной фазы» при нанесении покрытий на инструмент, в результате которой поверхность инструмента приобрела матовость и шероховатость повысилась до 0,1…0,12 мкм, что привело к необходимости очень длительного времени на приработку инструмента в процессе обработки (см. рис. 3.2-3.1 графики № 2).