Смекни!
smekni.com

Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля (стр. 5 из 20)

2. Управление формой импульса давление, что возможно при изменении в процессе нагружения параметров разрядного контура [2] или наложении нескольких импульсных полей с различными параметрами [3, 45].

В работе [46] были разработаны методы управления формой импульса давления ИМП в процессе формоизменения детали, путем программируемого дискретного изменения параметров разрядного контура, наложения нескольких полей и наложением токов, позволяющие задавать требуемую кинематику деформационного процесса. Получены расчетные зависимости описывающие форму импульса при программном изменении параметров разрядных контуров.

Численное моделирование показало возможность интенсификации процессов МИОМ при оптимальном программировании и управлении формой импульса давления. Это позволяет в 1,5-2раза повысить точность деталей в режимах упругого соударения с податливой (трансформируемой) оснасткой.

1.5 Выводы по разделу

1. МИОМ – сложный электромагнитно-механический процесс, в котором одновременно протекают и взаимодействуют электрические, магнитные и механические процессы. Поэтому при моделировании этих процессов необходимо учитывать их взаимное влияние друг на друга.

2. При описании формоизменении заготовки, как правило, использовались модели деформационной теории пластичности или теории пластического течения для модели жестко-пластического материала.

3. Отсутствуют научно-обоснованные методики проектирования формы спирали индуктора для реализации процесса обжима с наименьшими энергозатратами.

4. Известные работы по управлению процессом разряда многоблочных магнитно-импульсных установок были направлены на получение заготовок заданной геометрии и обеспечение заданной скорости подхода заготовки к сопрягаемой детали.

1.6 Постановка задачи исследования

Диссертационная работа направлена на решение важной народно-хозяйственной задачи заключающаяся в снижении энергоемкости операций магнитно-импульсной штамповки трубчатых заготовок по схеме обжима путем научно обоснованного выбора геометрии спирали индуктора и управлением процессом разряда магнитно-импульсной установки.

Для решения поставленной задачи необходимо:

1. усовершенствовать математическую модель функционирования «установка-индуктор-заготовка»;

2. исследовать энергосиловые и температурные условия функционирования индукторов различной геометрии;

3. разработать методику проектирования геометрии спирали индуктора, позволяющую наиболее эффективно реализовать процесс обжима трубчатой заготовки;

4. разработать математическую модель функционирования многоблочной магнитно-импульсной установки при неодновременном разряде блоков конденсаторных батарей и обосновать выбор временного интервала включения очередного блока конденсаторных батарей в разрядную цепь;

5. разработать ряд технологических процессов сборки трубчатых заготовок с использованием энергии импульсного магнитного поля.


2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРОЦЕССОВ В СИСТЕМЕ «УСТАНОВКА-ИНДУКТОР-ЗАГОТОВКА» ДЛЯ МИОМ

2.1 Основные соотношения электромеханики твердых тел

Принципиальная схема магнитно-импульсной установки приведена на рис.2.1. Через повышающий высоковольтный трансформатор и выпрямитель производят зарядку конденсаторной батареи, состоящей из групп параллельно включенных между собой импульсных конденсаторов. По окончании заряда конденсаторная батарея с помощью специального коммутирующего устройства-разрядника тригатрона разряжается на индуктор, внутри которого размещается заготовка.

Рис. 2.1. Принципиальная схема МИУ: 1- трансформатор повышающий; 2 - накопитель энергии (батарея конденсаторов);

3 -поджигающие устройства (разрядник); 4 - индуктор;

5 – заготовка

В момент разряда конденсаторной батареи в индукторе протекают импульсные токи, распределенные по сечению весьма неравномерно, соответственно распределены силы и температуры. Их распределение влияет как на деформацию заготовки, так и на прочность и стойкость самого индуктора.

Для учета сложного характера электромеханических процессов, протекающих в системе «установка – индуктор - заготовка», необходимо получить общую систему уравнений, учитывающую взаимное влияние электродинамических и механических процессов.

Далее рассматриваемую систему тел, в которой протекают электромеханические процессы, будем называть электромеханической системой.

Модель электродинамических процессов в электромеханической системе строилась на основе следующих гипотез:

1) токами смещения можно пренебречь по сравнению с токами проводимости;

2) в системе «установка-индуктор-заготовка» отсутствуют ферромагнетики.

3) распределение токов, а, следовательно, объемных сил и температур симметрично относительно оси индуктора. Многовитковый индуктор представляется как набор электрически связанных витков;

4) деформации и перемещения индуктора по сравнению с заготовкой, считаем, малы, поэтому задача механики для индуктора не решаем;

5) заготовку будем считать осесимметричной, а ее материал – упруго-пластическим;

6) время процесса мало, и теплопередача не происходит.

Первое предположение избавляет от необходимости исследования поля в диэлектриках. Оно может быть вычислено через токи, текущие в проводниках. Считается, что все возмущения поля мгновенно распространяются в исследуемой области.

Второе предположение дает возможность исключить влияние пути изменения магнитного поля на свойства материала и таким образом линеаризовать задачу.

Приведенные выше предположения приводят к квазистатической задаче электродинамики. Уравнения Максвелла в этом случае:

,
(2.1)
,
(2.2)
,
(2.3)
,
(2.4)

где

- вектор магнитной индукции, Тл;
- напряженность электрического поля, В/м;
- напряженность индуцированного электрического поля, В/м;
- плотность тока; m0 - магнитная постоянная; m0=4p×10-7; m - относительная магнитная проницаемость.

Для замыкания системы необходимо добавить закон Ома с учетом движения среды и напряженности стороннего электрического поля

, создаваемого батареей конденсаторов и закон сохранения заряда:
,
(2.5)
,
(2.6)

где

- удельная проводимость материала, 1/(Ом×м), а v- cкорость в данной точке и закон сохранения заряда,
-плотность заряда.

Выражение для вектора плотности пондеромоторных сил имеет вид

.
(2.7)

Для описания движения элементов электромеханической системы в систему уравнений были введены уравнения движения деформируемого твердого тела с учетом гипотезы о малых деформациях:

(2.8)
,
j = 1..3
(2.9)

где

,
- компоненты симметричных тензоров напряжений и деформаций,
- компоненты вектора перемещений,
- компоненты вектора пондеромоторных сил.

Эти уравнения являются общими как для упругих, так и для упруго-пластических сред.

Для упругой среды связь напряжений и деформаций можно записать в виде

,
(2.10)

где

- объемный модуль,
- упругий модуль сдвига,
.

А для пластической среды использовать, например, основные соотношения теории пластического течения:

1) Приращение деформации

на шаге по времени складывается из приращения упругой деформации
и пластической