Дифференциальная по времени форма записи множителей Лагранжа была выбрана для удобства их включения в систему дифференциальных по времени уравнений, получаемую после дискретизации.
2.4 Математическая модель электромеханических процессов в системе «индуктор-заготовка»
Решение задачи механики для индуктора не является целью данной работы, поэтому индуктор будем считать неподвижным. С точки зрения электродинамики индуктор является набором электрически связанных цилиндрических колец, а заготовка – цилиндрической оболочкой. В заготовке отсутствуют другие электрические поля, кроме индуцированных. Поэтому уравнение для распределения плотности тока в заготовке можно получить из уравнения для одновиткового индуктора (2.22), приняв равным 0 напряжение на конденсаторной батарее:
.Пондеромоторные силы вычислялись как производные от энергии по координате при неизменных токах [31]
(2.30)где fr, fz – плотности пондеромоторных сил по осям r и z.
Так как структура уравнений для индуктора и заготовки одна и та же, после дискретизации возможно сформировать общую систему уравнений, описывающую изменение распределения плотности тока и напряжения на конденсаторной батарее со временем.
Заготовку будем рассматривать осесимметричную, материал которой, упруго-пластическим.
Рассмотрим малые деформации заготовки. Связь между компонентами деформаций и перемещений в случае осесимметричной деформации имеют вид [50],
.Будем использовать теорию пластического течения для моделирования поведения заготовки. Основные ее соотношения с учетом малости деформаций приведены в формулах (2.11) – (2.12).
Вариационное уравнение Лагранжа с учетом даламберовых сил инерции и пондеромоторных сил имеет вид [8, 14, 15, 50]:
, (2.31)
где
- плотность материала; - тензоры напряжений и приращений деформаций соответственно, , - векторы ускорений, перемещений, пондеромоторных сил соответственно; - объем заготовки.В задаче об осесимметричной деформации, когда состояния по угловой координате
однородны после интегрирования по получим . (2.32)Здесь интегрирование ведется по площади
сечения заготовки.2.5 Построение численной модели для задачи электродинамики
2.5.1 Одновитковый индуктор и установка
Для численного интегрирования полученной системы интегро-дифференциальных уравнений (2.27) применялся метод конечных элементов. Были использованы треугольные конечные элементы нулевого порядка, т.е. распределение плотности тока по элементу считалось равномерным. Разбиение индуктора и заготовки на конечные элементы показано на рис. 2.2.
Интегрирование по площади поперечного сечения системы «индуктор‑заготовка» было заменено суммированием интегралов по элементам, вычисляемых по формуле:
,где
- координаты центров масс двух конечных элементов.Рис. 2.2.Схема разбиения одновиткового индуктора и заготовки на конечные элементы и обозначение сечений
Для получения уравнений, наиболее близких по форме к уравнениям теории цепей был осуществлен переход от плотностей токов к токам, протекающим по элементу
,где In – ток, протекающий через сечение элемента n; jn– плотность тока на элементе n; Sn– площадь конечного элемента;
Была получена система линейных дифференциальных по времени уравнений с постоянными коэффициентами. В данном случае конечных элементов нулевого порядка она совпадает с системой, получаемой в рамках метода магнитно-связанных контуров
(2.33)где
.с начальными условиями
В системе уравнений (2.33) приняты следующие обозначения:
, — ток в k-м контуре индуктора, - сопротивление j-го контура, — число контуров (элементов) с неизвестными токами, . При в формуле (2.33) в знаменателе оказывается бесконечность. Однако можно показать, что эта особенность устранима при интегрировании по площади элемента. Диагональные коэффициенты матрицы индуктивностей вычислялись по формуле: (2.34)Интегралы по углу и по площади вычислялись по методу Гаусса с 10-ю абсциссами, что обеспечило погрешность порядка 0,5%. Правильность вычисления интегралов подтверждается преобладанием диагональных компонент в матрице индуктивностей и ее положительной определенностью, что гарантирует положительность энергии магнитного поля.
Порядок коэффициентов в левой части уравнения (1) системы уравнений (2.33) составляет 10-7 , а в левой части уравнения (2)- 105. Известно, что численные методы решения систем дифференциальных уравнений весьма чувствительны к такому разбросу величин. Часто это приводит к неустойчивости и плохой сходимости решений, поэтому для улучшения устойчивости было проведено приведение параметров к безразмерному виду по формулам:
После чего система приняла вид:
(2.35)Интегрирование системы (2.35) велось методом Рунге- Кутта 4-го порядка. Вычисления проводились по формулам:
(2.36)Для интегрирования системы необходимо на каждом шаге вычислять производные
вектора . Это требует решения системы линейных алгебраических уравненийгде,
.С целью исключить решение на каждом шаге интегрирования системы линейных алгебраических уравнений было осуществлено преобразование (2.37) к виду
,где
– матрица, обратная матрице индуктивностей.Матрица
вычислялась перед началом интегрирования системы уравнений (2.37) методом исключения Гаусса.2.5.2 Многовитковый индуктор и установка
При минимизации функционала невязки (2.29) получили систему уравнений, последующая дискретизация и учет изменения напряжения на батарее конденсаторов приводит к системе линейных дифференциальных уравнений первого порядка с постоянными коэффициентами:
(2.38)где
- ток в k-м контуре индуктора; - сопротивление в j-м контуре; - напряжение в j-м контуре; - текущее напряжение на конденсаторной батарее; N - количество витков; n - номер витка, ; k – номер контура; М – число контуров принадлежащих индуктору и заготовке; H - число контуров, принадлежащих индуктору.