Смекни!
smekni.com

Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля (стр. 7 из 20)

Дифференциальная по времени форма записи множителей Лагранжа была выбрана для удобства их включения в систему дифференциальных по времени уравнений, получаемую после дискретизации.

2.4 Математическая модель электромеханических процессов в системе «индуктор-заготовка»

Решение задачи механики для индуктора не является целью данной работы, поэтому индуктор будем считать неподвижным. С точки зрения электродинамики индуктор является набором электрически связанных цилиндрических колец, а заготовка – цилиндрической оболочкой. В заготовке отсутствуют другие электрические поля, кроме индуцированных. Поэтому уравнение для распределения плотности тока в заготовке можно получить из уравнения для одновиткового индуктора (2.22), приняв равным 0 напряжение на конденсаторной батарее:

.

Пондеромоторные силы вычислялись как производные от энергии по координате при неизменных токах [31]

(2.30)

где fr, fz – плотности пондеромоторных сил по осям r и z.

Так как структура уравнений для индуктора и заготовки одна и та же, после дискретизации возможно сформировать общую систему уравнений, описывающую изменение распределения плотности тока и напряжения на конденсаторной батарее со временем.

Заготовку будем рассматривать осесимметричную, материал которой, упруго-пластическим.

Рассмотрим малые деформации заготовки. Связь между компонентами деформаций и перемещений в случае осесимметричной деформации имеют вид [50],

.

Будем использовать теорию пластического течения для моделирования поведения заготовки. Основные ее соотношения с учетом малости деформаций приведены в формулах (2.11) – (2.12).

Вариационное уравнение Лагранжа с учетом даламберовых сил инерции и пондеромоторных сил имеет вид [8, 14, 15, 50]:

, (2.31)

где

- плотность материала;
- тензоры напряжений и приращений деформаций соответственно,
,
- векторы ускорений, перемещений, пондеромоторных сил соответственно;
- объем заготовки.

В задаче об осесимметричной деформации, когда состояния по угловой координате

однородны после интегрирования по
получим

. (2.32)

Здесь интегрирование ведется по площади

сечения заготовки.

2.5 Построение численной модели для задачи электродинамики

2.5.1 Одновитковый индуктор и установка

Для численного интегрирования полученной системы интегро-дифференциальных уравнений (2.27) применялся метод конечных элементов. Были использованы треугольные конечные элементы нулевого порядка, т.е. распределение плотности тока по элементу считалось равномерным. Разбиение индуктора и заготовки на конечные элементы показано на рис. 2.2.

Интегрирование по площади поперечного сечения системы «индуктор‑заготовка» было заменено суммированием интегралов по элементам, вычисляемых по формуле:

,

где

- координаты центров масс двух конечных элементов.

Рис. 2.2.Схема разбиения одновиткового индуктора и заготовки на конечные элементы и обозначение сечений

Для получения уравнений, наиболее близких по форме к уравнениям теории цепей был осуществлен переход от плотностей токов к токам, протекающим по элементу

,

где In – ток, протекающий через сечение элемента n; jn– плотность тока на элементе n; Sn– площадь конечного элемента;

Была получена система линейных дифференциальных по времени уравнений с постоянными коэффициентами. В данном случае конечных элементов нулевого порядка она совпадает с системой, получаемой в рамках метода магнитно-связанных контуров

(2.33)

где

.

с начальными условиями

В системе уравнений (2.33) приняты следующие обозначения:

,

— ток в k-м контуре индуктора,
- сопротивление j-го контура,
— число контуров (элементов) с неизвестными токами,
. При
в формуле (2.33) в знаменателе оказывается бесконечность. Однако можно показать, что эта особенность устранима при интегрировании по площади элемента. Диагональные коэффициенты матрицы индуктивностей вычислялись по формуле:

(2.34)

Интегралы по углу и по площади вычислялись по методу Гаусса с 10-ю абсциссами, что обеспечило погрешность порядка 0,5%. Правильность вычисления интегралов подтверждается преобладанием диагональных компонент в матрице индуктивностей и ее положительной определенностью, что гарантирует положительность энергии магнитного поля.

Порядок коэффициентов в левой части уравнения (1) системы уравнений (2.33) составляет 10-7 , а в левой части уравнения (2)- 105. Известно, что численные методы решения систем дифференциальных уравнений весьма чувствительны к такому разбросу величин. Часто это приводит к неустойчивости и плохой сходимости решений, поэтому для улучшения устойчивости было проведено приведение параметров к безразмерному виду по формулам:

После чего система приняла вид:

(2.35)

Интегрирование системы (2.35) велось методом Рунге- Кутта 4-го порядка. Вычисления проводились по формулам:

(2.36)

Для интегрирования системы необходимо на каждом шаге вычислять производные

вектора
. Это требует решения системы линейных алгебраических уравнений

, (2.37)

где,

.

С целью исключить решение на каждом шаге интегрирования системы линейных алгебраических уравнений было осуществлено преобразование (2.37) к виду

,

где

– матрица, обратная матрице индуктивностей.

Матрица

вычислялась перед началом интегрирования системы уравнений (2.37) методом исключения Гаусса.

2.5.2 Многовитковый индуктор и установка

При минимизации функционала невязки (2.29) получили систему уравнений, последующая дискретизация и учет изменения напряжения на батарее конденсаторов приводит к системе линейных дифференциальных уравнений первого порядка с постоянными коэффициентами:

(2.38)

где

- ток в k-м контуре индуктора;
- сопротивление в j-м контуре;
- напряжение в j-м контуре;
- текущее напряжение на конденсаторной батарее; N - количество витков; n - номер витка,
; k – номер контура; М – число контуров принадлежащих индуктору и заготовке; H - число контуров, принадлежащих индуктору.