Смекни!
smekni.com

Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля (стр. 8 из 20)

В системе уравнений (2.38) первое уравнение отражает закон электромагнитной индукции с учетом множителей Лагранжа, второе – закон сохранение тока, а третье уравнение - закон изменения напряжения на батарее.

Для решения системы уравнения (2.38) использовался метод Рунге-Кутта 4-го порядка (2.36).

2.5.3 Система «индуктор-заготовка-установка»

Система «установка - индуктор – заготовка» описывалась двухконтурной схемой замещения (рис. 2.3).

Рис. 2.3. Упрощенная электрическая схема технологической системы МИОМ


Буквами «И» и «З» обозначены соответственно контуры индуктора и заготовки. С - емкость батареи конденсаторов, Rи, Lи, Rз, Lз – сопротивления и собственные индуктивности индуктора и заготовки, Lиз- взаимная индуктивность индуктора и заготовки.

Для учета омического сопротивления установки и ее индуктивности в первое уравнение системы (2.38) введем дополнительные слагаемые, отражающие падение напряжения на токоподводе и дополнительную ЭДС индукции:

(2.39)

где Rуст- сопротивление установки, Lуст- индуктивность установки.

2.5.4 Вычисления сил и температур

На основе известных токов вычислялись силы и температуры в каждой точке сечения индуктора и заготовки.

Выражение для силы взаимодействия между двумя элементами i и j после дискретизации (2.30) имет вид:

.

Тогда выражение для суммарной силы, действующей на элемент, выглядит следующим образом:

.

а выражение для компонентов плотности силы выглядит следующим образом:

, (2.40)

где

-площадь i-го элемента.

Ниже приведены выражения для радиальной и осевой компонент силы, с которой элемент действует сам на себя:

Считалось, что, так как время процесса мало, теплопередача не происходит. Тогда формулы для скорости нагрева и температуры элемента выглядят следующим образом:

;
.

2.5.5 Численное моделирование механических процессов в заготовке

Для решения задачи упруго-пластичности применяется метод упругих решений, заключающийся в сведении нелинейной задачи пластичности к сходящейся последовательности задач упругости.

Меридиональное сечение заготовки разбивалось на треугольные конечные элементы, причем сетки подзадач электродинамики и механики совпадали (рис.2.2). После дискретизации получили систему дифференциальных уравнений, описывающую движение узлов одного элемента, когда он находится в упругом состоянии

, (2.41)

где M- матрица масс, K-матрица жесткости задачи упругости;

;
- радиальная координата центра масс элемента; F- локальный вектор сил, действующих на элемент,
‑вектор перемещений, B – матрица производных функций формы, D- матрица упругих постоянных.

При построении численной модели использовались основные соотношения теории пластического течения.

1) приращение деформации

на шаге по времени
складывается из приращения упругой
и пластической
деформации:
;
(2.42)

2) приращение пластической деформации может быть получено по формуле для ассоциированного закона пластического течения:

(2.43)

В данной задаче в качестве условия текучести принят критерий Мизеса

где
,

где

- напряжения в элементе,
- предел текучести, Аp - работа пластического формоизменения.

Закон Гука в дискретной форме

(2.44)

после выражения упругих деформаций из (2.42) как разности полных и пластических деформаций можно записать следующим образом

. (2.45)

Подставляя данное выражение в соотношения МКЭ для упругой задачи, получим

(2.46)

Учитывая, что

и
, упростим выражение (2.39)

, (2.47)

где

- приведенная сила, связанная с пластическим формоизменением.

Интегрирование системы дифференциальных уравнений (2.47) проводилось методом дискретизации по времени

(2.48)

где

,
- значения перемещения, скорости в начале шага; a - ускорения на текущем шаге [42].

После подстановки выражения (2.48) в систему дифференциальных уравнений (2.47) движения получили:

. (2.49)

Выражение (2.49) представляет собой систему линейных алгебраических уравнений относительно вектора ускорений. Подставив найденный вектор ускорений на данном шаге в (2.48), получим перемещение и скорость в конце данного шага интегрирования.

Для приращения приведенной силы была получена формула на основе теории пластического течения. Подставив (2.43) в выражение приведенной силы пластического формоизменения, получим

, (2.50)

где

- вектор частных производных от уравнения поверхности текучести.

Коэффициент

вычислялся по формуле

, (2.51)

где

- вектор приращений узловых перемещений на данном шаге,
- касательный модуль пластичности.

Соотношения (2.51) можно получить следующим образом. Найдем полное приращение выражения

, используя дифференциал

. (2.52)

Когда материал находится в пластическом состоянии выполняется условие текучести, а соответственно выражение (2.52) должно тождественно равняться нулю.

(2.53)

С учетом того, что

- приращение работы пластической деформации, преобразуем равенство (2.53)

. (2.54)

Подставим в (2.54) выражение пластических деформаций через ассоциированный закон течения

. (2.55)

Запишем (2.55) в приращениях

(2.56)

и подставим выражение приращения пластической деформации через ассоциированный закон течения

.(2.57)

Подставляя (2.57) в (2.55) и проводя ряд преобразований, получаем (2.44).

Для численного решения задачи необходимо применять итерационную процедуру. Ниже приведен ее алгоритм

1) вычислить вектор внешних сил, используя решение задачи электродинамики;