Переключение муфты механизма подач:
При включении установочного перегона шлифовальной бабки от электродвигателя включается электромагнит 32, который перемещает золотник 13(2). Масло подаётся под торец цилиндра 45, который переключает муфту механизма подач для перегона.
Автоматический отвод шлифовальной бабки при перегрузке:
При перегрузке станка (большое усилие на шлифовальный круг), от реле максимального тока подаётся команда на электромагнит Э4 золотника 13(1). Последний, перемещаясь вниз, открывает доступ масла от насосной установки по линии 4-58-67-52 под торец золотника 22, перемещает его вниз и масло под давлением по линии 48-49 поступает к золотникам 23 и 24, которые устанавливают кран управления 20 в среднее положение. Рукоятка управления 21 становится в вертикальное положение. Шлифовальная бабка отходит от изделия, стол останавливается.
Разгрузка круговым направляющим шлифовальной бабки:
Для подачи масла к круговым направляющим шлифовальной бабки при разворотах отпускается винт клапана 48, расположенного на станине со стороны гидростанции (на разветвительной планке).
Давление масла в системе определяется демпфером 49.
Исходя из паспорта станка, выбираем в качестве рабочей жидкости масло “Турбинное – Т22” ГОСТ32-74. Рабочую жидкость заливают перед пуском станка в резервуар 1 через заливную горловину 8 до уровня верхнего маслоуказателя 9.
ρ=850 кг\м3 - плотность жидкости
υ=30 мм2/с- кинематическая вязкость жидкости при рабочей температуре
Жидкость масло “Турбинное – Т22” может быть использована при t=(+10)…(+80) °С
Из паспорта станка рабочее давление равно 1,2…1,6МПа.
По ГОСТ 12445-80 выбираем
.Определим максимальное давление в гидродвигателях:
Принимаем
.Так как у нас двухштоковый цилиндр, то
определяем по формуле , (4.1)где pсл- противодавление сливной полости гидроцилиндра, pсл=0.2…0.3 Мпа;
ηц- механический КПД гидроцилиндра, ηц=0.95…0.98;
Кш=0.5…0.7;
Fш- усилие штока гидроцилиндра, Fш=2,5 кН;
Принимаем pсл=0.2 Мпа, ηц=0.95, кш=0.6.
Полученное значение
округляем до ближайшего большего стандартного (по ГОСТ 12447-80), .По известным параметрам (D,d, l, Pц) выбираем гидроцилиндр
ЦРГ: 50*25*700
Принимаем гидроцилиндр (с двусторонним штоком) со следующими характеристиками D=50 мм; d=25 мм; l=700 мм (тип С); Pном=10 МПа.
Расход рабочей жидкости в гидроцилиндре, соответствующий заданной максимальной скорости
выходного звена , (4.2)где ηоц-объемный к.п.д. гидроцилиндра, при уплотнении поршня резиновыми кольцами и манжетами ηоц=1.0;
(4.3)Гидроаппараты (распределители, клапаны, дроссели, регуляторы потока) и кондиционеры рабочей жидкости (фильтры, гидробаки, гидроаккумуляторы) должны обеспечивать условия надежной работы гидропривода в течение установленного ресурса и по своим эксплуатационным параметрам соответствовать значениям, указанным в технических характеристиках.
Основные параметры гидроаппаратов: диаметр условного прохода dу, округленный до ближайшего стандартного значения, номинальные давления и расход.
Выбираем:
Манометр МПТ-2/4-25×4 ГОСТ 8625-77
Напорный золотник ПГ 54-22
Напорный золотник ПГ 54-24
Клапан обратный ПГ 51-24
Золотник реверсивный с электроуправлением 54БПГ 73-12
Клапан обратный Тс 38-11
Золотник включения манометра
Фильтр пластинчатый 0,08 Г41-13
МаслоуказательТ-30МН176-53
Панель периодических подачГ8-3М151-43
Демпфер
Цилиндр перемещения рычажного реверса 2
Гидро панель
Дроссель шлифования
Дроссель правки
Золотник тормозной
Теплообменник
Для изготовления жестких трубопроводов в гидроприводах станков в основном применяют трубы по ГОСТ 8734-75 из стали 20 или медные трубы по ГОСТ 11383-75. Стальные трубы применяют при всех давлениях и расходах. Их изготавливают бесшовными холоднотянутыми и холоднокатаными (при d<30 мм). При ограничении массы применяют тонкостенные бесшовные трубы из стали 10 и 20.
Медные трубы применяют при p<16 МПа и d≤16 мм. По сравнению со стальными медные трубы тяжелее, дороже и менее прочные. Достоинство медных труб - их гибкость, что обеспечивает монтаж сложных по конфигурации гидросхем.
С целью уменьшения потерь давления в трубопроводах диаметры их подбирают, так, чтобы по возможности обеспечить ламинарный режим движения жидкости (Re<2300).
Определим внутренний диаметр трубопровода:
, (6.1)где Q-расход жидкости;
vТ- скорость в трубопроводе:
во всасывающем трубопроводе vТ≤1.6 м/с;
сливных vТ=2 м/с;
напорном vТ=2 м/с.
Для всасывающей гидролинии от бака до насоса:
Для сливной гидролинии:
Для напорной гидролинии
Полученное значение диаметра трубопровода округляем до стандартного по ГОСТ 16516-80:
, , .Толщину стенки трубопровода определим по формуле для толстостенных труб (при dн/δ>16) с учетом отклонения в размерах диаметра ∆d и толщины стенки Кσ:
, (6.2)где рmax-максимально возможное давление в трубопроводе;
dн- наружный диаметр трубопровода;
[σр]- допустимое напряжение разрыва материала трубы (30…50% временного сопротивления материала), [σр]=0.5·200=100 Мпа,
σв= 200…250 Мпа- временное сопротивление для цветных материалов.
Учитывая возможность внешних механических повреждений, толщину стенки не следует назначать менее 1.0 мм для цветных металлов и 0.5 мм для сталей.
Всасывающая гидролиния:
Учитывая возможность внешних механических повреждений: δ=0,5 мм.
Сливная гидролиния:
;Выбираем δ=0,5 мм.
Напорная гидролиния:
;Выбираем δ=0,5 мм.
Исходя из толщины стенок, принимаем материал трубопровода, саль 40.
Различают три вида потерь давления в гидроприводе: потери давления на трение жидкости в трубопроводе, потери давления на местных сопротивлениях и потери давления в гидроаппаратуре.
Потери давления на трение жидкости в трубопроводе определяются по формуле Дарси-Вейсбаха:
, (6.3)где λ- коэффициент гидравлического трения,
l- длина рассматриваемого участка трубопровода,
d-внутренний диаметр трубопровода,
ρ- плотность жидкости,
vт- средняя скорость движения жидкости в трубопроводе:
vт=4Q/πd2, (6.4)
На величину коэффициента λ оказывает влияние режим течения жидкости. Различают два режима: ламинарный и турбулентный. Режим течения определяется безразмерным числом Рейнольдса Re. Для трубопроводов круглого сечения:
Re=vтd/υ, (6.5)
где υ- кинематическая вязкость жидкости при рабочей температуре.
Ламинарный режим течения переходит в турбулентный при определенном, критическом значении Reкр=2100…2300 для круглых гладких труб и Re=1600 для резиновых рукавов. Если режим течения ламинарный, то коэффициент гидравлического трения определяется по формуле:
λ=64/Re, (6.6)
если режим турбулентный, то
λ=0.3164/Re0.25, (6.7)
Определим потери на трение по длине
Всасывающая гидролиния
Re=1.5·103·6/30=300;
где υ=30 мм2/с- вязкость жидкости.
Т.к. Re=300<2300, то коэффициент гидравлического трения определяется по формуле:
λ=64/300=0,213;