Подвижный плоский источник теплоты в бесконечном стержне
Плоский источник теплоты постоянной мощности qравномерно распределен по поперечному сечению стержня Fи перемещается с постоянной скоростью vв направлении вдоль стержня (см. рис. 7.1, в). Боковая поверхность отдает теплоту в окружающую среду при постоянном коэффициенте теплоотдачи α.
Приращение температуры в точке А от мгновенного плоского источника, который действовал в точке О' tсекунд назад, составит
(7.10)Начало координат движется вместе с источником теплоты и находится в точке О.
Интегрируем приращения температуры от всех мгновенных источниковтеплоты в пределах от 0 до tН:
(7.11)Уравнение (7.11) описывает температурное поле в стержне в стадии теплонасыщения. Предельное квазистационарное состояние достигается при tH—>∞. В этом случае уравнение (7.11) после введения замены t = u2 и интегрирования принимает вид:
(7.12)
Предельное состояние. При нагреве стержня плоским источником теплоты распределение температуры по поперечному сечению стержня согласно уравнению (7.12) равномерно. В действительности из-за теплоотдачи с поверхности стержня всегда будет наблюдаться некоторая неравномерность распределения температуры по его поперечному сечению.
Распределение температуры вдоль стержня будет характеризоваться быстрым нарастанием температуры впереди источника теплоты и весьма плавным спадом температуры позади источника. Если 4ba/v2=0 т. е. теплоотдача отсутствует, то температура позади источника теплоты будет оставаться постоянной.
Неподвижный источник. Если в уравнении (7.12) v = 0, то получим уравнение стационарного температурного поля в стержне:
(7.13)
Стационарное состояние в стержне возможно лишь при наличии теплоотдачи в окружающую среду. Распределение температуры при стационарном процессе в стержне зависит от λ, b, Fи р.