БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
кафедра ЭТТ
РЕФЕРАТ на тему:
"ПОЛУЧЕНИЕ ПЛЕНОК ИЗ ГАЗОВОЙ ФАЗЫ"
МИНСК, 2008
Эпитаксия - это процесс наращивания слоев полупроводникового материала с упорядоченной кристаллической структурой на ориентированной пластине.
Выращиваемые слои могут повторять структуру пластины, например при выращивании кремния на кремнии, германия на германии. Они могут отличаться по структуре, например при выращивании кремния на сапфире, кремния на шпинели, кремния на оксиде бериллия.
Термин " эпитаксия " образован из двух греческих слов "эпи" - на, "таксис" - располагать в порядке. Впервые выращивание кристаллов из паровой фазы было предложено в 1957 г. Практическое использование этого метода началось с 1960 г.
Эпитаксию можно подразделить на три вида: авто-, гетеро - и хемоэпитаксию.
Автоэпитаксия - процесс ориентированного наращивания вещества, не отличающегося или незначительно отличающегося по химическому составу от вещества пластины. Она обеспечивает возможность формирования гомогенных (однородных) p-n-переходов и иногда называется гомоэгштаксией.
Гетероэпитаксия - процесс ориентированного наращивания вещества, отличающегося по химическому составу от вещества пластины. На границе "эпитаксиальный слой - пластина" образуется гетерогенный (неоднородный) p-n-переход. Гетероэпитаксия осуществима для элементов, не склонных к химическому взаимодействию.
Хемоэпитаксия - процесс ориентированного наращивания, при котором образование слоя происходит за счет химического взаимодействия вещества пластины с наносимым веществом. Полученный слой по химическому составу отличается как от вещества пластины, так и от наносимой фазы, но закономерно продолжает кристаллическую структуру пластины. При образовании таких слоев может быть сформирован гетеропереход или невыпрямляющий контакт.
Маркируют кремниевые эпитаксиальные структуры буквами: К - кремний; Д - дырочный; Э - электронный тип электропроводности; Б, Ф, С, М - легирующие элементы, соответственно бор, фосфор, сурьма, мышьяк.
Однослойные эпитаксиальные структуры, изготовленные на кремниевых пластинах n-типа с эпитаксиальным слоем р - типа, маркируют дробью с цифровым коэффициентом. Например:
(1)где 76 - диаметр пластины, мм; 8 - толщина эпитаксиального слоя, мкм; 380 - толщина пластины, мкм; 0,5 и 0,01 - удельное сопротивление эпитаксиального слоя и пластины соответственно, Ом • см.
Маркировка многослойных эпитаксиальных структур, изготовленных в процессе автоэпитаксиального наращивания слоев разных типов электропроводности аналогична маркировке однослойных структур, но содержит несколько уровней.
Эпитаксиальные структуры со скрытым слоем (ЭСС) (Рисунок 1),
Рисунок 1. Схема эпитаксиальной структуры со скрытым слоем:
1 - эпитаксиальная структура; 2 - скрытый слой; 3 – пластина
изготовленные, как правило, на кремниевых пластинах р-типа с локальными участками п - типа, которые формируют на них диффузией или ионным легированием мышьяком или сурьмой, маркируют так:
(2)где 76, 380 - диаметр и толщина пластины соответственно в мм и мкм; КЭФ, КЭМ, КДБ - тип электропроводности эпитаксиального, скрытого слоя и пластины соответственно; 4, 5 - толщины эпитаксиального и скрытого слоя, мкм.
Гидридную эпитаксию проводят чаще всего при температуре 1000° С реакцией пиролиза силана, которая идет почти с такой же скоростью, как и реакция восстановления SiCl4 при температуре 1200° С:
SiH4 => Si
+ 2Н2cкорость растущей пленки зависит от давления в реакторе. В интервале температур 1100 - 1225° С скорость роста пленки практически не зависит от температуры.
При температурах выше 1225° С начинается газофазное разложение силана, что приводит к уменьшению скорости осаждения Si. Скорость осаждения пленки зависит также от концентрации силана в газовом потоке. При концентрациях силана больших, чем 0,2 маc.%, и температурах выше 1100° С скорость осаждения уменьшается из-за газофазного разложения SiH4. Газофазное разложение силана помимо уменьшения количества Si, осаждающегося на пластину, приводит к попаданию твердых частиц продуктов газофазного пиролиза SiH4 в растущий слой.
Силановый процесс, который проводится при относительно низкой температуре, позволяет легко регулировать концентрацию SiH4 в газовом потоке, выбирать диапазон скоростей, слабо зависящий от температуры, что облегчает поддержание рабочей температуры с точностью ± 10° С.
К недостаткам гидридной эпитаксии следует отнести пирофорность силана (возможность самовозгорания на воздухе и взрыва). Это приводит к необходимости разбавлять силан аргоном или водородом до безопасных концентраций в баллоне (2,5 - 4%). Кроме того, если произошло газофазное разложение SiH4, то реактор, не имеющий водяного охлаждения, "зарастает" и выращенные пленки имеют большую плотность дефектов. При гидридном процессе требуется тщательно герметизировать все элементы газовых магистралей и узлы реакционной камеры, так как при взаимодействии SiH4 с воздухом образуется соединение, которое может забить магистрали. По сравнению с хлоридом силан - дорогостоящий продукт.
Пиролиз дихлорсилана. Гидридную эпитаксию можно осуществить реакцией пиролиза дихлорсилана SiH2Cl2. Реакция начинается при температуре 600° С. Оптимальные температуры для получения пленок 1080 - 1100° С. Ухудшение качества слоев происходит при температуре ниже 1050° С.
Химические реакции с участием SiH2Cl2 занимают промежуточное положение между реакциями с участием SiCl4 и SiH4. Осаждение Si из SiH2Cl2 может происходить в среде аргона или азота по реакции
SiH2Cl2 => Si
+2HClпричем водород не оказывает восстанавливающего действия. Кроме основной реакции возможны побочные:
SiHCl3 + Ar => Si + ЗНСl
SiCl2 + Ar => Si + 2HCl
SiCl4 + Ar => Si + 4HCl
Разложение SiH2Cl2 при избытках Н2 уменьшает вероятность протекания побочных реакций.
Как и при предыдущем процессе, на скорость роста эпитаксиальной пленки сильно влияет концентрация SiH2Cl2 в Н2 и температура процесса. В диапазоне 1100 - 1200° С, однако, это влияние незначительно. Энергия активации процесса при пиролизе дихлорсилана невелика, что свидетельствует о том, что скорость осаждения определяется только массопереносом реагентов в газовой фазе.
При пиролизе SiH2Cl2, протекающем при относительно низких рабочих температурах (1080 - 1100° С), практически отсутствует газофазное разложение, возможен подбор условий осаждения, не зависящих от температуры. К недостаткам относятся повышенное требование к герметичности газовых магистралей и реакционной камере и в несколько раз большая стоимость SiH2 Cl2 по сравнению с SiCl4.
Выбор того или иного кремнийсодержащего соединения для эпитаксии Si зависит от возможностей оборудования и температурные ограничений конкретного технологического маршрута.
Хлоридный метод заключается в восстановлении водородом кремния из S1CI4 • Реакция восстановления является гетерогенной
SiCl4 + 2Н2 => Si
+ 4HClПри относительно низких температурах скорость осаждения пленок описывается уравнением
Vp=Aexp [-
E/(RT)]Где
E – энергия активации процесса; A и R - постоянные, Т – температура процесса.Пластины после предварительной аммиачно-перекисной отмывки устанавливают на подложкодержатель. Проверяют герметичность установки по скорости уменьшения избыточного давления газа азота. Герметичность установки и реактора считаются достаточными, если избыточное давление 0,2 • 105 Па за 30 мин не уменьшается. После этого реакционную камеру продувают азотом в течение 5 мин (с расходом газа 1,5 м3 /ч). Далее реактор продувают рабочим газом-носителем водородом в течение 5 мин и нагревают подложкодержатель с пластинами до рабочей температуры (1200 - 1250° С).
Рабочую температуру контролируют оптическим пирометром через специальное смотровое окно в реакторе. После отжига пластин при рабочей температуре в течение 5-7 мин производится их газовое травление. Для этого к основному газу-носителю добавляют газообразный хлористый водород (расход хлористого водорода определяют по ротаметру или более точно с использованием регулятора расхода газа). Газовое травление проводится 1-2 мин со скоростью травления 0,1 - 0,2 мкм/мин. После травления газовую магистраль с хлористым водородом закрывают. Во время газового травления испаритель с SiCl4 продувают водородом на байпасную линию для установления требуемого рабочего расхода. Водород, проходя через испаритель, насыщается его парами. Смесь SiCl4 + H2 после окончания газового травления добавляется к основному потоку водорода путем открывания соответствующих газовых кранов. После окончания выращивания эпитаксиальной структуры линию подачи водорода в испаритель закрывают.
Увеличение концентрации SiCl4 выше некоторого критического значения приводит к образованию газообразного НС1, который травит поверхность пластины и осаждаемого слоя.
Увеличение скорости роста с увеличением температуры связано с более интенсивным протеканием реакции восстановления. Повышение скорости газового потока при фиксированной температуре также приводит к увеличению скорости роста, что связано с интенсификацией доставки и отвода продуктов реакции.