(48•2)/32=3 кг.
Масса SO3=2+3=5 кг.
Теоретически требуется кислорода при обжиге 100 кг концентрата:
• для окисления металлов (согласно табл.3)-13,797 кг;
• для окисления серы до SO2-23,03 кг;
• для окисления серы до SO3–3 кг.
Итого: 39,827 кг.
Кислород в печь вводится вместе с воздухом, в котором содержится 23% кислорода, что составит:
(39,827•77)/23=133,3 кг азота.
Теоретическое количество воздуха составит:
39,827+133,3=173,16 кг.
Объём этого воздуха=m/p=173,16/1,293=133,92 м3
Результаты расчётов сведём в табл.4.
Таблица 4. Теоретический состав обжиговых газов
Компоненты | кг | м3 | об.% | p,кг/м |
SO2 | 46,06 | 16,10 | 13,17 | 2,86 |
SO3 | 5,00 | 1,38 | 1,13 | 3,62 |
CO2 | 1,45 | 0,76 | 0,62 | 1,90 |
N 2 | 133,3 | 103,119 | 85,08 | 1,25 |
Итого: | 185,81 | 121,359 | 100 |
Практически обжиг проводится при большом избытке воздуха; примем в данном расчёте двойное количество воздуха.
В состав избыточного воздуха входит:
O2: 173,16•0,23=39,827 кг или 30,8 м3
N2: 173,16•0,77=133,3 кг или 103,119 м3
Итого: 173,16 кг или 133,92 м3
Количество и состав обжиговых газов при двойном избытке воздуха приведён в табл.5.
Таблица 5. Количество и состав обжиговых газов при двойном избытке воздуха
Компоненты | кг | p,кг/м | м3 | об.% |
SO2 | 46,06 | 2,86 | 16,10 | 6,34 |
SO3 | 5,00 | 3,62 | 1,38 | 0,54 |
CO2 | 1,45 | 1,90 | 0,76 | 0,30 |
N2 | 259,94 | 1,25 | 207,96 | 81,91 |
O2 | 38,82 | 1,428 | 27,68 | 10,91 |
Итого: | 351,27 | 253,88 | 100 |
Материальный баланс предварительного обжига цинковых концентратов представлен в табл.6.
Таблица 6. Материальный баланс обжига
Приход | кг | Расход | кг |
СыройКонцентрат | 100,0 | ПолуобожжённыйКонцентрат | 87,30 |
Воздух | Газы: | ||
азот | 259,94 | ||
кислород | 38,82 | ||
сернистый ангидрид | 46,06 | ||
серный ангидрид | 5,00 | ||
двуокись углерода | 1,45 | ||
невязка | 0,05 | ||
Итого | 338,62 | Итого: | 438,62 |
Тепловой баланс обжига
Приход тепла:
1. Окисление сульфида цинка по реакции:
ZnS+1,5O2=ZnO+SO2+105630 кал.
По этой реакции окислится (39,92•97,4)/65,4=59,45 кг ZnS.
Количество цинка, соответствующее данному количеству ZnS берём из табл.3. При этом будет получено (105630•59,45•103)/97,4=64473,34 ккал.
2. Окисление сульфида цинка по реакции:
ZnS+2O2=ZnSO4+185380 кал.
По этой реакции окислиться (0,14•97,4)/65,4=0,209 кг Zn и будет получено (185380•0,209•103)/97,4=397,77 ккал.
3. Окисление сульфида свинца по реакции:
PbS+1,5O2=PbO+SO2+100820 кал.
Количество сульфида свинца, окисляющееся по этой реакции
(1,25•239,2)/207,2=1,44 кг PbS,
При этом будет получено (100820•1,44•103)/239,2=606,94 ккал.
4. Окисление сульфида свинца по реакции:
PbS+2O2=PbSO4+196960 кал.
Окислиться по этой реакции (1,25•239,2)/207,2=1,44 кг PbS, и будет получено (196960•1,44•103)/239,2=1185,71 ккал.
5. Окисление сульфида кадмия по реакции:
CdS+1,5O2=CdO+SO2+26360 кал.
По этой реакции будет получено (26360•0,64•103)/144,4=116,83 ккал.
6. Окисление сульфида меди по реакции:
Cu2S+1,5O2=Cu2O+SO2+91800 кал.
Окислиться по этой реакции (1,7•159,2)/127,2=2,13 кг Cu2Sи будет получено (91800•2,13•103)/159,2=1228,29 ккал.
7. Окисление пирита по реакции:
4FeS2+11O2=2Fe2O3+8SO2+790600 кал.
По этой реакции будет получено тепла (790600•5,00•103)/479,2=8249,17 ккал.
8. Окисление FeS по реакции:
2FeS+3,5O2=Fe2O3+2SO2+292980 кал.
Окислиться по этой реакции mFe(Fe2O3)табл 3-mFe(FeS2)табл 2=2,9-2,33=0,57 кг железа, что даёт (0,57•87,8)/55,8=0,9 кг FeS. При этом будет получено тепла (292980•0,9•103)/175,6=1501,61 ккал.
9. Окисление FeS по реакции:
3FeS+5O2=Fe3O4+3SO2+411720 кал.
2,9 кг Fe в виде FeS составит (2,9•87,8)/55,8=4,56 кг FeS. При этом будет получено тепла (411720•4,56•103)/263,4=7127,73 ккал.
10. Образование сульфата кальция по реакции:
CaO+SO3=CaSO4+96070 кал.
По этой реакции будет получено тепла (96070•0,72•103)/136,1=508,23 ккал.
11. Образование сульфата магния по реакции:
MgO+SO3=MgSO4+67210 кал.
По этой реакции будет получено тепла (67210•1,336•103)/120,3=746,41 ккал.
12. Окисление серы по реакции:
1/2S2 + O2 = SO2
По этой реакции будет получено тепла:
для халькопирита: (70960•0,43•103)/32=947,98 ккал;
для пирротина: (70960•0,16•103)/32=360,34
Всего получено тепла 87450,35 ккал.
Расход тепла
1. Потери тепла с отходящими газами, нагретыми до °С, ккал:
Q=mi•ci•t.
SO2: 46,06•0,177•580=4728,52
SO3: 5,00•0,177•580=513,30
CO2: 1,45•0,2493•580=209,66
N2: 259,94•0,2571•580=38761,73
O2: 38,82•0,2371•580=5338,45
Итого: 49551,66
2. Потери тепла с обожжённым концентратом, нагретым до 620°С:
87,30•0,22•620=11907,72 ккал.
3. Расход тепла на разложение карбонатов по реакциям:
CaCO3=CaO+CO2-42498 кал;
(42498•1,07•103)/100,1=454,27 ккал;
MgCO3=MgO+CO2-28108 ккал;
(28108•1,88•103)/84,3=626,85ккал;
Итого-1081,12 ккал.
4. Испарение воды на подсушивающем поде. Допустим, что в концентрате 6% H2O, и вся она испаряется на подсушивающем поде, тогда расход тепла составит λ•m=540•100•0,06=3240 ккал.
5. Разложение CuFeS2 и Fe7S8 примерно одинаков и равен 144,9 ккал/кг. Тогда на разложение этих соединений будет затрачено тепла
(1,49+1,98)•144,9=502,8 ккал.
6. Теплоизлучение и другие потери тепла определяются по разности. Результаты расчета теплового баланса обжига представлены в табл.7.
Таблица 7. Тепловой баланс обжига цинковых концентратов
№ | Приход тепла | ккал | % | № | Расход тепла | ккал | % |
1 | Окисление сульфида цинка до оксида | 64473,34 | 73,48 | 1 | Унос с отходящими газами | 49551,66 | 57,52 |
2 | Окисление сульфида цинка до сульфата | 397,77 | 0,45 | 2 | Унос с огарком | 11907,72 | 13,82 |
3 | Окисление PbS до PbO | 606,94 | 0,69 | 3 | На разложение карбонатов | 1081,12 | 1,26 |
4 | Окисление PbS до PbSO4 | 1185,71 | 1,36 | 4 | На испарение воды из концентрата | 3240 | 3,76 |
5 | Окисление CdS до CdO | 116,83 | 0,13 | 5 | На разложение сульфидов CuFeS2 и Fe7S8 | 502,8 | 0,58 |
6 | Окисление Cu2S до Cu2О | 1228,29 | 1,40 | 6 | Теплоизлучение (по разности) | 19858,73 | 23,06 |
7 | Окисление FeS2 до Fe2O3 | 8249,17 | 9,43 | ||||
8 | Окисление FeS до Fe2O3 | 1501,61 | 1,72 | ||||
9 | Окисление FeS до Fe3O4 | 7127,73 | 8,15 | ||||
10 | Образование CaSO4 | 508,23 | 0,59 | ||||
11 | Образование MgSO4 | 746,41 | 0,86 | ||||
12 | Окисление серы | 1308,32 | 1,5 | Итого | 86142,03 | 100 |
Итого 87450,35 100
Выводы
1. При данном обжиге избытка тепла нет, поэтому зачастую требуется подтопка посторонними источниками тепла.
2. Целесообразно воздух, нагретый при охлаждении печи, вводить в печь для обжига.