Рис. 4
Очевидно, что для перехода балки в предельное состояние необходимо появление одного пластического шарнира. Он появится в средине пролёта, под силой. Используем принцип возможных перемещений и запишем уравнение работ: Fu×BB1-Mu×2a = 0,
здесь учтено, что работа внутренних сил всегда отрицательна, т.к. они направлены в сторону противоположную перемещению. Кроме того, мы полагаем, что т. к. угол a- мал: a = 2ВВ1 / L . Тогда значение предельной силы будет равно:
Fu = 4Mu/ L .
При заданном сечении, а также известном пределе текучести Mu легко вычисляется, согласно изложенному выше и, следовательно, поставленная задача решена.
Пример 2. Двухпролётая, один раз статически неопределимая балка загружена в левом пролёте сосредоточенной силой (Рис. 5). Найти предельное значение силы.F
L 2L 2L
FuMu
AaBbC MuB1 a+bСхема перехода в предельное состояние
Рис. 5
Предельное состояние будет достигнуто в том случае, если появятся два пластических шарнира – один под силой, другой на опоре С. Уравнение работ запишется:
Fu× BB1- Mu(a+b)- Mu×b = 0, где: a= BB1/ L ; b= BB1/ 2L ;
тогда: Fu =2,5Mu/ L.
Обратим внимание на тот факт, что для определения предельной нагрузки не было необходимости раскрывать статическую неопределимость балки. Здесь было сразу ясно, что наибольшие изгибающие моменты, а, следовательно, и пластические шарниры образуются под силой и на промежуточной опоре. В более сложных случаях знание упругого состояния может быть полезным, хотя с принципиальной точки зрения необязательным, т. к. можно перебрать все кинематически возможные схемы перехода в предельное состояние и отобрать истинную с помощью кинематического экстремального принципа.
Пример 3. Двухпролётная статически неопределимая балка загружена равномерно распределённой нагрузкой, приложенной в левом пролёте (Рис. 6). Найти предельную нагрузку для балки.