Смекни!
smekni.com

Пресс для правки коленчатого вала с гидравлическим приводом (стр. 7 из 12)

Находим площадь смятия для штока:

(35)

Отсюда находим:


что меньше допустимого [σсм] = 6000 кг/см2.

3.4 Расчет направляющих скольжения

Исходные данные (рисунок 5): ширина рабочих граней

расстояние между серединами граней

длина стола
расстояния

коэффициент трения
сил

сила тяжести подвижных частей

Рисунок 5. Направляющая.

Уравнения равновесия подвижного узла:

(36)


Из первых четырех уравнений находим реакции граней направляющих и тяговую силу:

Определяем средние давления на направляющих:

(37)

(38)

Максимальные давления

могут быть определены зная координаты
равнодействующих реакций. Для их определения используется два последних уравнения равновесия стола и дополнительное уравнение перемещений, являющихся результатом деформирования поверхностей рабочих граней. Это уравнение следует из предположения, что момент внешних сил относительно оси Y:

(39)

равный моменту реакций направляющих относительно той же оси


(40)

распределяется между направляющими пропорционально их жесткости, которая сама пропорциональна их ширине. Следовательно, уравнение перемещений имеет вид:

(41)

Теперь находим координаты

:

(42)

(43)

Максимальное давления на направляющие определяют по зависимостям:

;
(44)

что меньше допустимого 2,5-3 МПа.

Расчет направляющих на жесткость включает определение контактных деформаций их рабочих граней в предположении, что они пропорциональны давлениям на гранях:

(45)

3.5 Расчет силового цилиндра

Силовой цилиндр изготовляется из толстостенной бесшовной стальной трубы (выполненной из Стали 45 с закалкой с охлаждением в воде до HRC 48) (рисунок 6.).

Величину давления выбираем в зависимости от требуемого тягового усилия [8]:

Так как необходимое усилие Р = 100 кН , то принимаем значение давления р = 60 н/м2.

Подобрав значение р ,определяем площадь поршня и диаметр цилиндра:

;
(46)

где F- площадь поршня


Выбираем ближайшее большее значение диаметра цилиндра из установленного ряда [9]: D=0.16 м.

Рисунок 6. Гидроцилиндр.

1-корпус, 2-поршень, 3- крышка.

Диаметр штока определяем в зависимости от заданного соотношения между скоростями прямого и обратного ходов поршня с учетом прочности и устойчивости.

Для обычных цилиндров диаметр штока вычисляется по уравнению:

(47)

Принимая

и решая это уравнение относительно d, получим

Стенки цилиндра проверяют на прочность (Па)


(48)

что меньше допустимого

3.6 Определение параметров насоса

Основными параметрами насоса являются производительность и давление. При определении потребной производительности исходят из наибольшей заданной скорости поршня

.

Согласно уравнению ,

(49)

Найденное количество масла увеличивают на 15—20%, учитывая неизбежные утечки в цилиндре, клапанах, трубопроводах и т.д.

Таким образом, искомая производительность насоса

Для упрощения расчетов при определении давления, развиваемого насосом, при подборе гидроаппаратуры и расчете трубопроводов исходят из наибольшего давления в полости цилиндра со стороны штока, т. е. принимают

(50)

Мощность насоса определяют по формуле

(51)

3.7 Определение размеров трубопроводов

Внутренний диаметр трубы вычисляют по формуле

(52)

где Qн – расход в м3/сек; v —скорости движения масла в трубе в м/сек. Скорость движения масла в системе при расчете принимают для всасывающих трубопроводов 1,5—2 м/сек, для нагнетающих 3,5 м/сек и для мест сужения на коротких участках до 5,5 м/сек.

Толщина стенки трубы

(53)