Параметр | тих.вал- полум | тих.вал- колесо | промвал-шестерня | быстрвалшестер. | быстр.валполум. |
Ширина шпонки b,мм | 6 | 8 | 2 | 5 | 2 |
Высота шпонки h,мм | 6 | 6 | 2 | 5 | 2 |
Длина шпонки l,мм | 16 | 22 | 14 | 12 | 14 |
Глубина паза на валу t,мм | 3,5 | 4 | 1,2 | 3 | 1,2 |
Глубина паза во втулке t1,мм | 2,8 | 3,3 | 1 | 2,3 | 1 |
7 Проверочный расчет валов на статическую прочность
В соответствии с табл.5 наиболее опасным является сечение 3-3 тихоходного вала, в котором имеются концентраторы напряжений от посадки зубчатого колеса с натягом, шпоночного паза и возникают наибольшие моменты. Исходные данные для расчета:
МИэкв= 146Нм;
МИ=144Нм;
Т3-3=21Нм;
dв=30мм;
в=8мм – ширина шпонки,
t=4мм – глубина шпоночного паза,
l=22мм – длина шпонки.
При расчете принимаем, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения – по отнулевому циклу.
Определяем диаметр вала в рассчитываемом сечении при допускаемом напряжении при изгибе [σ-1]и=60МПа:
мм; 30>23.Условие соблюдается.
Определяем напряжения изгиба: σи=Ми/W;
где W – момент сопротивлению изгибу. По [4,табл.11.1]:
; мм3;σи=144000/32448=4,4Н/мм2.
При симметричном цикле его амплитуда равна: σа= σи =4,4Н/мм2.
Определяем напряжения кручения: τк=Т3-3/Wк;
где Wк – момент сопротивлению кручению. По [4,табл.22.1]:
; мм3;τк=21000/64896=0,3Н/мм2.
При отнулевом цикле касательных напряжений амплитуда цикла равна:
τа= τк /2=0,3/2=0,15Н/мм2.
Определяем коэффициенты концентрации напряжении вала [4, с.258]:
(Кσ)D=( Кσ/Кd+ КF-1)/ Кy;
(Кτ)D=( Кτ/Кd+ КF-1)/ Кy; (7.1)
где Кσ и Кτ – эффективные коэффициенты концентрации напряжений,
по табл.11.2 [4] выбираем для шпоночных пазов, выполненных концевой фрезой Кσ =1,6, Кτ =1,4;
Кd – коэффициент влияния абсолютных размеров поперечного сечения, по табл.11.3 [4] выбираем Кd =0,75;
КF- коэффициент влияния шероховатости, по табл.11.4 [4] выбираем для шероховатости Rа=1,6 КF=1,05;
Кy - коэффициент влияния поверхностного упрочнения, по табл.11.4 [4] выбираем для закалки с нагревом ТВЧ Кy =1,5.
Подставив значения в формулы (7.1) получим:
(Кσ)D=( 1,6/0,75+ 1,05-1)/ 1,5=1,45;
(Кτ)D=( 1,4/0,75+ 1,05-1)/ 1,5=1,28.
Определяем пределы выносливости вала [4, c263]:
(σ-1)D=σ-1/(Кσ)D; (τ-1)D=τ-1/(Кτ)D; (7.2)
где σ-1 и τ-1 – пределы выносливости гладких образцов при симметричном цикле изгиба и кручения, по табл.3. [4] σ-1 = 380Н/мм2 , τ-1 ≈0,58 σ-1 =220Н/мм2;
(σ-1)D=380/1,45=262Н/мм2; (τ-1)D=220/1,28=172 Н/мм2.
Определяем коэффициенты запаса прочности по нормальным и касательным напряжениям 4, c263]:
sσ=(σ-1)D/ σа; sτ=(τ-1)D/ τа. (7.3)
sσ=262/ 4,4=59; sτ=172/ 0,15=1146.
Определяем общий коэффициент запаса по нормальным и касательным напряжениям [4, c263]:
(7.4)где [s]=1,6…2,1 – допускаемый коэффициент запаса прочности.
Сопротивление усталости вала в сечении 3-3 обеспечивается, расчет остальных валов не проводим, т.к. расчет проведен на самом опасном сечении, и коэффициент запаса прочности значительно превышает допустимый.
8 Выбор и проверочный расчет подшипников
Предварительно выбранные подшипниками с действующими на них радиальными нагрузками приведены в табл.7.
Таблица 7
Параметры выбранных подшипников
Быстроходный вал | Промежуточный вал | Тихоходный вал | |
№ | 100 | 36100 | 46205 |
d, мм | 10 | 10 | 25 |
D, мм | 26 | 26 | 52 |
В, мм | 8 | 8 | 15 |
С, кН | 4,62 | 5,03 | 15,7 |
Со, кН | 1,96 | 2,45 | 8,34 |
RА, Н | 137,4 | 1419 | 4821 |
RБ, Н | 13,1 | 405 | 798 |
Подшипники устанавливаем по схеме «враспор». Пригодность подшипников определяем по условиям [4, c.129]:
Ср≤С; Lр≥Lh;
где Ср – расчетная динамическая грузоподъемность;
Lh – требуемая долговечность подшипника, для зубчатых редукторов Lh =10000ч.
; [4, c.129] (8.1)где ω – угловая скорость соответствующего вала (см. табл.1); m=3 для шариковых подшипников; RЕ – эквивалентная динамическая нагрузка, при отсутствии осевых усилий [4, табл.9.1]:
RЕ=V×RАКδКτ (8.2)
где Kd - коэффициент безопасности; Kd =1,1…1,2 [4, табл.9.4]. Принимаем Kd =1,1.
V – коэффициент вращения, при вращении внутреннего кольца V=1
Kτ – температурный коэффициент; Kτ =1 (до 100ºС) [4, табл.9.4].
Определяем расчетную долговечность подшипников в часах [4, c.129]:
(8.3)Подставив значения в формулы (8.1)-(8.3) проверяем подшипники.
Для быстроходного вала:
RЕ=137,4х1,1=151Н;
- условие выполняется; - условие выполняется.Для промежуточного вала:
RЕ=1419х1,1=1560Н;
- условие выполняется; - условие выполняется.Для тихоходного вала:
RЕ=4821х1,1=5300Н;
- условие выполняется. - условие выполняется.Окончательные параметры подшипников приведены в табл.7.
9 Выбор масла, смазочных устройств
Используем картерную систему смазывания. В корпус редуктора заливаем масло так, чтобы червяк был в него погружен на глубину hм (рис.10):
hм max =(0,1…0,5)d1 = 2…8мм;
hм min= 2,2×m = 2×1 = 2,2мм.
При вращении колеса масло будет увлекаться его зубьями, разбрызгиваться, попадать на внутренние стенки корпуса, откуда стекать в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которым покрываются поверхности расположенных внутри корпуса деталей, в том числе и подшипники.
Рис.10 Схема определения уровня масла в редукторе
Объем масляной ванны принимаем из расчета 0,5 л на 1кВт передаваемой мощности V = 0,5×Nдв = 0,5×0,25 = 0,125 л.
Контроль уровня масла производится круглым маслоуказателем, который крепится к корпусу редуктора при помощи винтов. Для слива масла предусмотрена сливная пробка. Заливка масла в редуктор производится через съемную крышку в верхней части корпуса.
Выбираем смазочный материал. Для этого ориентировочно рассчитаем необходимую вязкость:
где ν50 – рекомендуемая кинематическая вязкость смазки при температуре 50°С;
ν1 =170мм2/с – рекомендуемая вязкость при v=1м/с для зубчатых передач с зубьями без термообработки;
v=4м/с – окружная скорость в зацеплении
Принимаем по табл.10.29 [4] масло И-220А.
Для обоих валов выберем манжетные уплотнения типа 1 из ряда 1 по ГОСТ 8752-79. Установим их рабочей кромкой внутрь корпуса так, чтобы обеспечить к ней хороший доступ масла.
Список использованной литературы
1. Основы конструирования: Методические указания к курсовому проектированию/ Сост. А.А.Скороходов, В.А Скорых.-СПб.:СПбГУКиТ, 1999.
2. Дунаев П.Ф., Детали машин, Курсовое проектирование. М.: Высшая школа, 1990.
3. Скойбеда А.Т., Кузьмин А.В., Макейчик Н.Н., Детали машин и основы конструирования, Минск: «Вышейшая школа», 2000.
4. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб. пособие. – М.: Высш. шк., 1991
5. Анурьев В.И. Справочник конструктора-машиностроителя: В 3 т. -8-е изд. перераб. и доп. Под ред. И.Н.Жестковой. – М.: Машиностроение, 1999