3.3 Определение геометрических параметров передачи.
Межосевое расстояние.
- предварительное значение межосевого расстояния - вращающий момент на шестерне - передаточное число редуктораК – коэффициент, зависящий от твердости поверхности зубьев шестерни и колеса
Вычисляем окружную скорость:
Выбираем степень точности зубчатой передачи.
Степень точности по ГОСТу 1643-81. Получили: 9 – передача низкой точности.
Уточняем предварительно найденное значение
:Принимаем:
где
- коэффициент ширины = 0,315 = 410(мПа) - коэффициент нагрузки - коэффициент, учитывающий внутреннюю динамику нагружения = 1,02 - - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линийПредварительные основные размеры колеса.
Делительный диаметр колеса:
Принимаем:
Ширина колеса:
Принимаем:
Ширина шестерни:
Модуль передачи:
- максимально допустимый модуль - минимальное значение модуля.Принимаем m = 5.
- коэффициент, учитывающий внутреннюю динамику нагружения - коэффициент, учитывающий влияние погрешностейПринимаем m = 1(мм) при твердости ≤ 350 HB
Суммарное число зубьев и угол наклона.
Min-й угол наклона зубьев
0Суммарное число зубьев
Принимаем Zs=118.
Определяем действительное значение угла наклона зуба:
0Принимаем β=100
Число зубьев шестерни:
Принимаем
Число зубьев колеса:
Фактическое передаточное число:
Делительный диаметр шестерни:
Принимаем
Делительный диаметр колеса:
Диаметры
и окружностей вершин и впадин зубьев колес внешнего зацепления:шестерни:
колеса:
3.4 Определение сил в зацеплении.
- окружная
- радиальная
- осевая
Сила | обозначение | Величина (Н) |
Осевая | 3162 | |
Радиальная | 6623 | |
окружная | 17833 |
3.5 Проверочный расчет передачи на контактную и изгибную усталостную прочность.
Расчетное напряжение в зубьях колеса:
-коэффициент, учитывающий перекрытие зубьевРасчетное напряжение в зубьях шестерни:
Проверка зубьев колес по контактным напряжениям:
4. Предварительный расчет валов.
4.1 Выбор материала и термообработки
Быстроходный вал - сталь 40ХН, улучшение и закалка ТВЧ
Тихоходный вал – сталь 45, нормализация.
4.2 Выбор конструкции вала, определение геометрических параметров.
1. Быстроходный вал с коническим концом:
d – диаметр вала
tкон = 2,5
r = 3,5
r – координата фаски подшипника
dБП - диаметр буртика
Определим длину посадочного конца:
lмб = 1,5∙ d =1,5 ∙ 55 = 82,5 мм
Принимаем lмб = 85 мм.
Определим длину цилиндрического участка:
lц =0,15 ∙ d = 0,15 ∙ 55 = 8,25 мм
Принимаем lц =10 мм
Определим длину промежуточного участка:
lкб =1,4 ∙ dп = 1,4 ∙ 60 = 85 мм
Принимаем по таблице М36х3
Определим lр:
lр = 1,2 ∙ dр = 1,2 ∙ 36 = 43,2 мм
Принимаем lр = 45 мм
2. Тихоходный вал с коническим концом:
d – диаметр вала
tкон = 2,9
r = 4
Определим диаметр посадочной поверхности для колеса:
d к ≥ 110 мм
d к =120 мм
d к ≥ d БП
Определим длину посадочного конца:
lМТ = 1,5 ∙ d = 1,5 ∙ 90 = 135 мм
Принимаем lМТ = 130 мм
Определим длину промежуточного участка:
lКТ =1,2 ∙ dП = 1,2 ∙ 95 = 114 мм
Принимаем lКТ =110 мм
Определим длину цилиндрического участка:
lц =0,15 ∙ d= ,015 ∙ 90 = 13,5 мм
Принимаем lц = 14 мм
Принимаем по таблице М64х4
Определим lр:
lр = 1,1 ∙ dр = 1,1 ∙ 64 = 70,4 мм
Принимаем lр = 70 мм
4.3 Выбор типа подшипников
Тихоходный вал – шариковые радиальные
Быстроходный вал – однорядные подшипники
5. Расчет долговечности подшипников
5.1 Выбор схемы установки подшипников, способ их закрепления на валу и в корпусе
Схема установки:
а) тихоходный вал – «враспф»
б) быстроходный вал – с одной плавающей опорой
Способ закрепления подшипников на валу и в корпусе зависит от величины и направления действующих нагрузок, частоты вращения, условий монтажа и демонтажа и т.д.
5.2 Составление расчетных схем для тихоходного вала и определение реакций в опорах