Смекни!
smekni.com

Привод цепного транспортера (стр. 1 из 3)

Привод цепного транспортёра


Содержание

Введение

1 Кинематический расчет привода

2 Предварительный расчет валов

3 Уточненный расчет валов

4 Расчет подшипников на долговечность

5 Выбор смазки редуктора

6 Проверка прочности шпоночного соединения

7 Расчёт соединения с натягом

8 Подбор муфты

9 Список используемой литературы


1 Кинематический расчет.

Выбор электродвигателя

1.1 Нахождение мощности на выходе

РВЫХ = ТJ /10 3=6300*0,8/10 3=5.04кВт

1.2 Определение общего КПД привода

hобщ = h3зуб×h3подш×hмуфты,

где: hзуб – КПД зубчатой передачи;

hподш – КПД подшипников;

hмуфты – КПД муфты.

hмуфты = 0,98; hзуб = 0,97; hподш = 0,99;

hобщ = 0,973× 0,993× 0,98 = 0,867.

1.3 Определение требуемой мощности электродвигателя

1.4 Определение частоты вращения вала электродвигателя

nвх = nв×u,

где: u = uбыстр×uтих;

Из таблицы 1.2 [1] выбраны передаточные отношения тихоходной и быстроходной передачи:

uтих = (2,5…5,6); uбыстр =8

nвх = nв×u = 48 × (2,5…5,6) ×8= 960…1445 об/мин.

Исходя из мощности, ориентировочных значений частот вращения, используя табл. 24.9 (уч. П.Ф. Дунаев, О.П. Леликов) выбран тип электродвигателя:

АИР 132S6/960 (dвала эл.=38мм.)

1.5 Определение вращающего момента на тихоходном валу

1.6 Определение действительного фактического передаточного числа

Uд = Uред = 20.1


2 Предварительный расчет валов

Крутящий момент в поперечных сечениях валов

Быстроходного Tб= 50.8 H×м

Промежуточного Tпр= 210.46 H×м

Тихоходного Tт= 1002.8 H×м

Предварительные значения диаметров (мм) различных участков стальных валов редуктора определяют по формулам:

Для быстроходного:

Для промежуточного:

Для тихоходного:

Выбираем шариковые радиальные однорядные подшипники лёгкой серии.

Для быстроходного вала: 207 d=35мм, D=72мм, В=17мм, r=2мм;

Для промежуточного: 207 d=35мм, D=72мм, В=17мм, r=2мм;

Для тихоходного: 213 d=65мм, D=120мм, В=23мм, r=2,5мм;


3 Уточнённый расчёт валов

3.1 Расчёт быстроходного вала

Ft=1848.3 Н; Fr=697.6 Н; Fa=507.7 Н; Т=50.8 Н·м

Находим реакции опор А и Б:

Реакции опор от действия консольной нагрузки

Нормальные и касательные напряжения при действии максимальных нагрузок:

;
;

-суммарный изгибающий момент, где
-коэффициент перегрузки(для асинхронных двигателей
=2,2 );

-крутящий момент.

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-момент сопротивления сечения вала;

Так как

, то вал выдерживает заданную нагрузку.

3.2 Промежуточный вал (расчёт на статическую прочность)

Изгибающий момент от осевых сил:

Находим реакции опор А и Б:


Определяем нормальные и касательные напряжения при действии максимальных нагрузок:

-суммарный изгибающий момент, где
- коэффициент перегрузки(для асинхронных двигателей
=2,2 ).

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-крутящий момент;

-момент сопротивления сечения вала;

Так как

, то вал выдерживает заданную нагрузку.

3.3 Тихоходный вал (расчёт на статическую прочность)

Ft=8622 Н; Fr=3379.5 Н; Fa= 3446.2Н; Т=1002.75 Н·м

Fк=Сp·Δ=5400·0,1=540 Н;

Находим реакции опор А и Б:

Определяем нормальные и касательные напряжения при действии максимальных нагрузок:

- суммарный изгибающий момент, где
-коэффициент перегрузки (для асинхронных двигателей
=2,2 ).

-осевая сила;

-момент сопротивления сечения вала;