Смекни!
smekni.com

Применение нанотехнологий в различных отраслях народного хозяйства (стр. 2 из 4)

В настоящий момент проводятся исследования возможностей использования наночастиц серебра в фармацевтических препаратах. Но уже сейчас они находят огромное количество применений.

Например, фирма «Гелиос» выпускает зубную пасту «Знахарь» с наночастицами серебра, эффективно защищающую от различных инфекций. Также небольшие концентрации наночастиц добавляют в некоторые кремы из серии “элитной” косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При использовании наблюдается также противовоспалительный и заживляющий эффект.

Ткани, модифицированные серебряными наночастицами, являются, по сути, самодезинфицирующимися. На них не может «ужиться» ни одна болезнетворная бактерия или вирус. Наночастицы не вымываются из ткани при стирке, а эффективный срок их действия составляет более шести месяцев, что говорит о практически неограниченных возможностях применения такой ткани в медицине и быту. Материал, содержащий наночастицы серебра, незаменим для медицинских халатов, постельного белья, детской одежды, антигрибковой обуви и т.д., и т.п.

Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных.

Люди всегда искали способы борьбы с инфекциями, передаваемыми воздушно-капельным путем – гриппом, туберкулезом, менингитами, вирусным гепатитом и т. п. Но, увы, воздух в наших квартирах, офисах и особенно в местах массового скопления людей (больницы, общественные учреждения, школы, детские сады, казармы, тюрьмы и т. п.) перенасыщен патогенными микроорганизмами, выдыхаемыми зараженными людьми.

Традиционные способы профилактики не всегда справляются с этой проблемой, поэтому нанохимики предложили для ее решения очень элегантный способ: добавить в лакокрасочные материалы, покрывающие стены заведений, наночастицы серебра. Как оказалось, на покрашенных такими красками стенах и потолках не может «жить» большинство патогенных микроорганизмов.

Наночастицы, добавленные в угольные фильтры для воды, практически не вымываются с ней, как это происходит в случае обычных серебряных ионов. Это говорит о том, что срок действия таких фильтров будет несоизмеримо больше, а качество очистки воды возрастет на порядок.

Крошечные, незаметные, экологически чистые серебряные наночастицы могут применяться везде, где необходимо обеспечить чистоту и гигиену: от косметических средств до обеззараживания хирургических инструментов или помещений. При этом, как уверяют ведущие российские ученые в данной области, стоимость средств и материалов, созданных на их основе, будет не намного дороже традиционных аналогов, и с развитием нанотехнологий они станут доступны каждому. Фирма Samsung уже добавляет наночастицы серебра в сотовые телефоны, стиральные машины, кондиционеры и другую бытовую технику.

2. Наноэлектроника

Как известно, все вещества состоят из атомов, соединенных химическими связями, во многом определяющими их физико-химические свойства, в частности, электропроводность. Так, например, соль или дерево не проводят ток, являясь идеальными диэлектриками, в то время как металлическая проволока служит превосходным проводником тока.

Долгое время основными материалами микроэлектроники считались кремний - основа чипов, и медь, используемая в токопроводящих дорожках и контактах. Пластмассовым в компьютере был разве что корпус монитора. Однако прогресс не стоит на месте, и в последнее время все большую популярность завоевывают проводящие полимеры, которым, по прогнозам материаловедов, в ближайшие годы предстоит стать чуть ли не основным сырьем для производства полупроводниковой техники. Но прежде чем говорить об электропроводимости таких веществ, давайте вспомним, что же такое полимеры вообще.

Полимеры - это огромные молекулы-цепочки (макромолекулы), состоящие из большого числа многократно повторяющихся однотипных молекул-звеньев (мономеров). Греческая приставка «поли», означает «много». Типичным полимером является уже знакомая нам молекула белка, состоящая из сотен молекул аминокислот. В природе полимеры встречаются на каждом шагу. Они – важная часть любого микроорганизма, растения, животного. Например, целлюлоза, крахмал, каучук, природные смолы – примеры полимеров растительного мира. В человеческом организме также немало полимеров: мышцы, кожа, волосы и др.

До недавнего времени полимеры создавала только природа. Но в 20-х годах прошлого столетия человек узнал ее секрет и научился синтезировать их самостоятельно. Искусственные полимеры прочно вошли в наш быт под видом таких привычных веществ, как полиэтилен, капрон, нейлон и другие виды пластмасс. Сегодня благодаря своим ценным свойствам пластмассы повсеместно заменяют древесину, металл, стекло. Пластмассы не боятся влаги и едких кислот, не подвержены ржавчине и гнили и к тому же изготавливаются из дешевого углеводородного сырья.

Меняя длину и способы переплетения цепочек-полимеров, можно управлять прочностью и эластичностью пластмасс. Стоит к цепочке добавить еще хотя бы одно звено или ввести небольшое количество примесей — и у полимера появляются новые свойства. Одни пластмассы по прочности сравнимы с самой лучшей сталью, другие эластичнее резины, третьи прозрачны, как хрусталь, но не разбиваются. Одни пластмассы мгновенно разрушаются под действием тепла, другие способны выдерживать очень высокую температуру. Зная все это, ученые на сегодняшний день создали сотни тысяч различных синтетических полимеров. Отличительным свойством синтетических полимеров до недавнего времени считалось их нулевая электропроводность. Все привычные типы пластмасс являются хорошими диэлектриками благодаря прочным ковалентным связям, образующим макромолекулярные соединения.

Однако эпохальное достижение трех нобелевских лауреатов 2000 года - Алана МакДайармида (США), Алана Хигеру (США) и Хидеки Ширакаве (Японии) – круто изменило общепринятую точку зрения. Этим ученым впервые удалось превратить пластмассу в электрический проводник. Студент Ширакавы как-то по ошибке добавил слишком много катализатора, в результате чего бесцветный пластик вдруг стал отражать свет подобно серебру, и это навело на мысль о том, что он перестал быть изолятором. Дальнейшие исследования привели к открытию полимера с проводимостью, в десятки миллионов раз превосходящей обычный пластик. Это открывает путь к новой электронике ХХI века, основанной на органических материалах. Ведь органические материалы легче и гибче традиционного кремния, им проще придать нужную форму, в том числе и трехмерную.

На проводящих полимерах основана молекулярная электроника. Например, ученые из Аризонского университета создали ограничитель напряжения из семи анилиновых фрагментов. Разрабатываются молекулярные транзисторы, конденсаторы, диоды. Американская компания Superconnect разработала материал, который в будущем поможет ускорить передачу данных в Интернете в сто раз! Это особый полимер, позволяющий управлять потоками света при помощи других потоков (т.е. чисто фотонный транзистор).

Уже в начале нашего века появились серьезные преграды на пути развития электроники. Один из возможных путей дальнейшего прогресса – разработка миниатюрных интегральных устройств, в которых роль электронов частично или полностью передана фотонам. Это должно привести к созданию вычислительной техники, превосходящей по быстродействию и информационной емкости современные электронные устройства. Для реализации приборов с квантовой связью или устройств оптической обработки информации могут быть использованы квантовые плоскости на основе множества чередующихся сверхтонких (толщиной в один атом) полупроводниковых пленок. Замена электронов на фотоны породило новое направление в электронике – нанофотонику.

Перспективное направление развития нанотехники, отмеченное еще Эриком Дрекслером, – переход, как это ни кажется парадоксальным, от электронных устройств к механическим компьютерам. Обычный механический компьютер с элементами макроскопического масштаба, разумеется, очень громоздок и работает чрезвычайно медленно. Однако с компонентами размером в несколько атомов такой механический компьютер оказался бы в миллиарды раз компактней современной микроэлектроники. И хотя механические сигналы передаются в 100 тыс. раз медленнее, им нужно было бы «преодолевать» путь в 1 млн. раз меньший, чем электронам в современных микросхемах. Поэтому простой механический нанокомпьютер был бы более быстродействующим.

Прототип такого устройства уже существует. Компанией IBM создана удивительная «многоножка», которая стала первым квантовым коммерческим устройством хранения данных.

3. Инструменты нанотехнологии