Сепарация газа и жидкости - важнейшая промысловая операция. По существу она является первой стадией подготовки газа к транспортировке.
Сепаратор должен включать следующие секции и оборудование:
главную сепарационную секцию для удаления капель жидкости из газа, высота которой должна быть достаточна для осаждения мельчайших капель жидкости под действием силы тяжести;
емкость для жидкости, предназначенную для улавливания больших порций жидкости, иногда поступающей из газопроводов;
приспособление для уменьшения турбулентности потока в самом аппарате для лучшего оседания капель жидкости; коагулятор для улавливания из газа мельчайших капель, которые слишком малы и не оседают под действием силы тяжести;
средства контроля давления и уровня жидкости.
Все сепарирующие устройства можно подразделить на собственно сепараторы и скрубберы. Скруббером можно назвать любое приспособление, предназначенное только для отделения жидкости от газа, не имеющее емкости для накопления жидкости, сепарационной секции для осаждения капель и не оборудованное средствами контроля давления и уровня жидкости.
Работа любого сепаратора основана на применении одного или нескольких принципов осаждения: за счет силы тяжести, центробежной силы, соударения, электростатических сил, ультразвука, фильтрации, коагуляции, адсорбции и термического воздействия.
Проблема усложняется тем, что частицы имеют различные размеры и могут быть твердыми и жидкими. Поэтому размеры сепараторов и их стоимость всегда определяются характеристикой обрабатываемого газа.
Размер частиц обычно определяется их диаметром, выраженным в микронах. Частицы, размером более 10 мкм можно легко отделить от газа в обычном сепараторе.
Более мелкие частицы отделить от газа очень трудно даже при использовании силы тяжести, соударения, центробежной силы и фильтрования.
Сепарацию, основанную на других принципах, использовать для газовых потоков высокого давления пока не удается.
Капли жидкости, попавшие в сепаратор, находятся в нестабильном состоянии. При соответствующем времени контакта происходит их коагуляция или испарение.
Время контакта обычно обратно пропорционально размерам капель, и прямо пропорционально количеству контактов между частицами.
На этом допущении основана сепарация - за счет соударения. По-существу, коагулятор частиц предназначен именно для того, чтобы соударение и сепарация произошли за приемлемый промежуток времени.
Такие свойства жидкости, как поверхностное натяжение, влияют на коагуляцию частиц и их осаждение, поэтому при проектировании сепараторов их необходимо учитывать.
Химические свойства веществ не имеют никакого значения для сепарации их частиц.
Например, разница в химических свойствах гликоля и нефти не влияет на их сепарацию, хотя физические характеристики этих веществ могут оказать существенное влияние на осаждение их частиц в сепараторе.
Многие промышленные коагуляторы основаны на нескольких принципах сепарации, поэтому очень трудно, а иногда невозможно определить эффективность каждого из них или их взаимное влияние.
Сепарация, распространенная у нас на промыслах, обычно проходит при сравнительно высоких (и, во всяком случае, положительных) температурах и носит в основном характер чистого газодинамического процесса, при котором от газа отделяются уже выделившиеся и сформировавшиеся при данном давлении и температуре частицы (глобулы) углеводородной жидкости.
Естественно, что такая "высокотемпературная" сепарация не даст значительного эффекта, так как углеводороды, находящиеся в газе в парообразном состоянии, не отделяются от него и поступают с ним в трубопроводы.
Поэтому, чтобы извлечь из газа все сравнительно легко конденсирующие компоненты, важно в сепараторах понизить температуру газа.
В этом случае в сепараторах будут проходить два процесса: термодинамический процесс выделения (конденсации) жидкости и газодинамический процесс отделения этой жидкости от газа.
Этот комплекс процессов и получил название "низкотемпературная сепарация". Низкотемпературная сепарация является наиболее эффективным процессом для выделения и отделения из сырого газа всех высококипящих компонентов.
Кроме того, сепарация газа при низкой температуре является отличным средством для дегидратации его, так как под действием сравнительно низких температур содержащиеся в газе пары воды конденсируются в капельную жидкость, переходя затем в кристаллогидраты, которые, как и жидкие углеводороды, в сепараторах отделяются от газа.
Дегидратации газа (осушка) совершенно необходима, потому что образующиеся кристаллогидраты, выпадая, могут перекрыть газопровод и прекратить транспорт газа.
Можно утверждать, что низкотемпературная сепарация является высокоэффективным комплексным процессом, освобождающим газ от воды и "выбивающим" из него высококипящие компоненты.
Универсальность и высокая эффективность низкотемпературной сепарации газа в сочетании с практически бесплатным холодом, получаемым на промыслах в результате использования энергии, заключенной в самих газовых потоках высокого (100-200 am) давления, делает этот процесс незаменимым почти на всех газодобывающих промыслах, где требуется осушить и обезжирить газ.
Продукция газоконденсатных месторождений, как видно по изотермам конденсации, содержит большое количество ценных жидких компонентов, которые при определенных условиях находятся в растворе с газом, и, если этот газ не подвергнуть обработке холодом, компоненты вместе с ним будут попросту сожжены как топливо. [2, с.12]
1. Клименко А.П. Разделение природных углеводородных газов. К.: Техника, 1964. - 371с.
2. Арутюнов А.И. Низкотемпературная сепарация природного газа. М.: Гостоптехиздат, 1961. - 49с.