Дипломный проект
на тему
«Проект доменной печи производительностью 7000 т передельного чугуна в сутки»
Введение
Значительные достижения металлургической науки в последние годы обусловлены использованием современных методов исследования и контроля, позволивших значительно углубить представления о металлургических процессах. Представить сущность процессов, протекающих при металлургическом переделе железных руд, невозможно без использования современных знаний в области физической химии, кристаллографии, физики твердого тела и т.д.
Несмотря на быстрое развитие новых отраслей промышленности, металлургия сохраняет и долго еще будет сохранять свое преимущественное положение в современной индустрии.
Особое место в интенсификации производства отводится реконструкции и механическому перевооружению предприятий, автоматизации и совершенствованию производства на базе современной науки и техники. Целью данной работы является разработка строительства доменной печи с использованием материалов, оборудования на усовершенствованном уровне. Использование внепечного оборудования новейших технологий, применяемого за рубежом.
Применение в качестве добавок жидкого и газообразного топлив явилось одним из главных направлений развития технологии доменного производства в истекшем десятилетии. В последние годы возрос интерес к использованию дешевого и малодефицитного измельченного твердого топлива как заменителя кокса. В СССР и за рубежом выполнен ряд научно-исследовательских и опытно-промышленных работ, значительно приблизивших решение этой проблемы в промышленном масштабе.
1. Выбор и обоснование сырьевой базы
1.1 Железорудные материалы
Балансовые запасы собственно железорудных месторождений Северо-Запада составляют по всем категориям 2504 млн. т и содержат 588 млн. т извлекаемого железа, что обеспечивает выплавку около 7 млн. т чугуна в год в течение 80 лет или более значительную выплавку, но с меньшим сроком обеспеченности [1].
Оленегорское месторождение расположено к югу от Мурманска, близ ст. Оленья Кировской железной дороги. Главными рудными минералами являются магнетит и гематит. В целом ¾ рудного железа заключено в магнетите, а ¼ – в гематите.
Ковдорское месторождение расположено в 118 км от ст. Пинозеро Кировской железной дороги. Приурочено к контакту известняков со щелочной интрузией. На обогатительной фабрике Ковдорского рудника двухстадийная магнитная сепарация руд: сухая и мокрая.
Костамукшское месттрождение находится в 65 км от железнодорожной ст. Юшкозеро. Месторождение приурочено к комплексу нижнеархейских метаморфических сланцев, железистых кварцитов метаморфизованных эффузивов. Это месторождение рассматривается в качестве резерва на отдаленное будущее.
Реальные возможности использования этих ресурсов весьма ограничиваются их невысокой экономической эффективностью как из-за требующейся большой транспортной работы при потреблении руд, так и вследствие расположения в необжитом районе с высокой заработной платой.
1.2 Флюсы
Флюсы это добавки вводимые в доменную печь и аглошихту для снижения температуры плавления пустой породы и предания доменному шлаку необходимого состава и физических свойств, обеспечивающих получение чугуна заданной марки и нормальную работу печи.
В доменном цехе и на аглофабриках в основном используют основные флюсы (известняк, доломитизированный известняк). Вывод из доменной шихты сырого известняка снижает удельный расход кокса на тонну чугуна, поэтому применяют офлюсованный агломерат и окатыши, т.е. известняк поступает на аглофабрики для спекания агломерата.
Техническая характеристика известняка поступающего на аглофабрики приведены в таблице 1.
Таблица 1 – Химический состав известняка, %
Материал | SiO2 | Al2O3 | Fe | Fe2O3 | MnO | P2O5 | ZnO | SO3 | П.п.п. | K2O |
Известняк | 2.13 | 0.38 | 1.44 | 2.05 | 0.01 | 0.01 | 0.004 | 0.04 | 41.61 | 0.15 |
1.3 Топливо
В качестве топлива, восстановителя и разрыхлителя шихты в доменном производстве применяют кокс – прочное спекшееся вещество, остающееся после удаления из каменного угля летучих веществ при нагревании до температуры 950 – 1100 град. без доступа воздуха [2].
В связи с непрерывным ростом производства чугуна и недостатком коксующихся углей особенно остро стоит вопрос о снижении расхода кокса в доменных печах. В данное время применяют в качестве заменителя кокса природный газ. Коэффициент замены кокса природным газом 0,5–1,0.
2. Выбор, расчет и обоснование технологических параметров плавки
2.1 Температура и влажность дутья
В связи с непрерывным ростом производства чугуна и недостатком коксующихся углей – особенно остро стоит вопрос о снижении расхода кокса в доменных печах. Повышение температуры дутья является важным условием снижения расхода кокса и увеличением подачи в печь его заменителей (мазут, природный газ, угольная пыль).
Средняя естественная влажность воздуха – 12,5 г/м3. Увлажнение дутья позволяет быстро и эффективно регулировать тепловое состояние печи. С применением природного газа роль и значение увлажненного дутья изменилась. Поэтому при применении природного газа влажность дутья снижают, иногда до естественной, стремясь предельно увеличить теплосодержание дутья и подать в печь максимальное количество заменителей кокса. Но увлажнение дутья не только дает возможность работать с высоким нагревом дутья, но и позволяет устранить влияние колебаний атмосферной влажности на нагрев печи, эффективно регулировать тепловое состояние горна, повышать интенсивность плавки благодаря повышению содержания кислорода в дутье [3].
2.2 Степень обогащения дутья кислородом
Повышение концентрации кислорода в дутье сопровождается уменьшением расхода дутья на 1 кг сгорающего у фурм углерода, приблизительно обратно пропорционального, и несколько более медленным уменьшением выхода фурменного газа. Повышение концентрации кислорода в дутье, как и увеличение температуры дутья, сопровождается значительным ростом теоретической температуры горения. С увеличением концентрации кислорода уменьшается количество газов на единицу выплавляемого чугуна.
При выплавке передельного чугуна чрезмерные температуры в горне вызывают значительные затруднения в ведении плавки (систематические подвисания шихты) и препятствуют получению малокремнистого чугуна. Однако понижение теоретических температур горения может быть достигнуто путем понижения температуры дутья или значительного его увлажнения, (но оба эти способа связаны с перерасходом кокса), либо путем вдувания в горн природного газа и других углеводородов.
Для сохранения оптимальных тепловых и газодинамических условий в печи принимаю расход кислорода – 80 м3/т, природного газа – 104 м3/т.
2.3 Расход топливной добавки
В качестве топливной добавки широкое применение получил природный газ. Вдувание природного газа в доменную печь сопровождается увеличением количества продуктов горения, снижением температуры газа в горне, расширением косвенного восстановления и уменьшением расхода кокса. Совместное применение обогащенного дутья кислородом и природного газа дает возможность существенно сократить удельный расход кокса, повысить интенсивность плавки и производительность печи.
Однако во избежании неполадок связанных с переохлаждением горна и образовании сажистого углерода при горении газа у фурм, а также эффективного использования вдуваемого газа и рационального его расхода первостепенное значение имеет распределение газа по фурмам и хорошее смешение его с дутьем.
2.4 Давление дутья и колошникового газа
Увеличение давления газов на колошнике увеличивает интенсивность плавки и производительность печи. Кроме того сокращается существенно вынос пыли. С увеличением давления дутья понижается содержание серы в чугуне, кремния, а также увеличивается содержание углерода – все это улучшает качество чугуна. В данном расчете принято давление колошникового газа – 2,5 мПа.
2.5 Расход железорудных материалов
Согласно расчету шихты (приложение А) на 1 тонну чугуна расходуется:
– агломерата 1099,5 кг;
– окатышей 452,9 кг.
2.6 Состав чугуна
Химический состав чугуна представлен в таблице 2 (приложение А):
Таблица 2 – Химический состав чугуна
Элемент | Si | S | Mn | C | P | Fe |
Содержание, % | 0.50 | 0.02 | 0.30 | 4.52 | 0.07 | 94.57 |
Полученный чугун (из расчета) удовлетворяет ГОСТу 805–80
2.7 Состав шлака и его физические и физико-химические свойства
Химический состав шлака представлен в таблице 3 (приложение А):
Таблица 3 – Химический состав шлака
Соединения | SiO2 | CaO | FeO | S | Al2O3 | MgO | MnO |
Содержание, % | 39.96 | 38.77 | 0.49 | 0.79 | 8.73 | 10.21 | 1.05 |
Основность шлака CaO/SiO2 = 0,97.
Температура плавления шлака tшл = 1400 град. С, вязкость – 0,4 нс/м2 или (4 пуаз).
2.8 Показатели тепловой работы
Согласно расчету шихты (приложение А) показатели тепловой работы следующие:
– Полезно используемое тепло q исп = 8549,10 МДж/т;
– коэффициент использования тепла Кт = 88,78%;
– количество тепла выделяющегося на 1 кг суммарного углерода qс = 13,36 МДж/кг;
– коэффициент использования энергии горючего Кс = 51,59%.
Показатели тепловой работы полученные в результате расчета шихты, соответствуют обычно встречающимся в практике и показывают, что величина удельного расхода кокса выбрана верно.
2.9 Показатели восстановительной работы и состав колошникового газа
В результате расчета шихты (приложение А), получен следующий состав колошникового газа: