Смекни!
smekni.com

Проектирование главного редуктора вертолета (стр. 1 из 7)

Министерство образования Российской Федерации

Самарский Государственный Аэрокосмический Университет

имени академика С.П. Королёва

Кафедра основ конструирования машин

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовому проекту по проектированию главного редуктора вертолета

Студент: Кондратенко Е.А. гр.1310

Руководитель проекта: Силаев Б.М.

Самара 2008

Техническое задание

Кинематическая схема редуктора

Исходные данные:

Сила тяги на несущем винте 8,8 кН;

Несущая сила на винте 0,4 кН;

Частота вращения выходного вала 210 об/мин;

Мощность на выходном валу 120 кВт;

Частота вращения входного вала 1600 об/мин;

Расчетная долговечность 1300 ч;

Расстояние от плоскости подвески до несущего винта 650 мм;

Привод работает спокойно без толчков и вибраций. Режим нагружения нулевой.

Реферат

Пояснительная записка к курсовому проекту по проектированию зубчатых передач.

Стр.40, рис.1, приложения, исп. источники 3.

Коническая передача, цилиндрическая передача, крутящий момент, контактное напряжение, напряжение изгиба, коэффициент запаса, передаточное число, межосевое расстояние, вал, гайка, подшипник.

Разработана конструкция редуктора для передачи и усиления крутящего момента с вала двигателя на винт. Обоснована целесообразность использования цилиндрических колёс.

Содержание

Введение

1. Описание редуктора и принципа его работы

2. Кинематический и энергетический расчет редуктора

2.1 Разбивка общего передаточного отношения

2.2 Определение частот вращения валов

2.3 Выбор КПД и определение мощностей на валах

2.4 Определение крутящих моментов на валах

3. Расчет цилиндрической передачи

3.1 Определение допускаемых контактных напряжений

3.2 Определение допускаемых напряжении изгиба

3.3 Определение основных габаритов передачи для второй ступени

3.4 Проверка передачи по контактной прочности

3.5 Проверка прочности при изгибе для второй ступени

3.6 Расчет геометрических параметров зубчатой передачи

4. Проверка на статическую прочность при перегрузке

5. Предварительное определение диаметров валов

6. Предварительный подбор подшипников

7. Определение усилий в зацеплениях

7.1. Определение усилий в зацеплениях на первой передаче

7.2. Определение усилий в зацеплениях на второй передаче

7.3 Определение реакций в опорах валов

7.3.1 Проверочный расчет валов на выносливость

7.4. Расчёт долговечности подшипников качения

8. Расчет шлицевых соединений

9. Система смазки

Заключение

Список использованных источников

Введение

Производственные процессы в большинстве отраслей народного хозяйства выполняют машины, и дальнейший рост материального благосостояния тесно связан с развитием машиностроения.

К важнейшим требованиям, предъявляемым к проектируемой машине, относятся экономичность в изготовлении и эксплуатации, удобство и безотказность обслуживания, надёжность и долговечность.

Для обеспечения этих требований детали должны удовлетворять ряду критериев, важнейшие среди которых - прочность, надёжность, износостойкость, жёсткость, виброустойчивость, теплостойкость, технологичность.

Зубчатые передачи в современной промышленности имеют важные значения. Благодаря высокому КПД они широко применяются в технике В данной работе произведен расчет, необходимый для того, чтобы спроектировать редуктор вертолёта.

Курсовой проект по деталям машин является первой конструкторской работой студента и поэтому её значение весьма существенно. Изучение основ конструирования (проектирования) начинают с конструирования простейших узлов машин - приводов, редукторов. Опыт и знания, приобретенные студентом при конструировании этих узлов машин, являются основой для его дальнейшей конструкторской работы, а также для выполнения курсовых проектов по специальным дисциплинам и дипломного проекта.

1. Описание редуктора и принципа его работы

В данной работе рассматривается главный редуктор вертолета. Входная коническая ступень. Вторая ступень - цилиндрическая. Редуктор предназначен для понижения оборотов и повышения крутящего момента на валах.

2. Кинематический и энергетический расчет редуктора

2.1 Разбивка общего передаточного отношения

Общее передаточное число определяем по формуле

частота вращения входного вала;

- частота вращения

несущего винта.

Для двухступенчатого редуктора

где U1 - передаточное число первой ступени, U2 - передаточное число второй ступени.

В двухступенчатом цилиндрическом редукторе для рациональной разбивки передаточных чисел рекомендуется эмпирическая зависимость

.

Передаточное число второй ступени

2.2 Определение частот вращения валов

Частоты вращения входного и выходного валов заданы

мин
мин

Определяем частоту вращения промежуточного вала исходя из передаточного отношения

Для выбранного передаточного отношения

2.3 Выбор КПД и определение мощностей на валах

Принимаем КПД для цилиндрической передачи передачи

, для конической передачи
. Мощность на валах определяется по формуле:

где

- мощность на валу,

- мощность на предыдущем валу, кВт,

- КПД ступени.

Для выходного вала задана мощность Р

=130 кВт.

Исходя из этого условия, определяем мощности на остальных валах:

2.4 Определение крутящих моментов на валах

Определение крутящих моментов на всех валах редуктора производится по формуле:

где Т - крутящий момент, Н×мм,

Р - мощность, кВт,

n - обороты вала, мин-1,После подстановки получим:

Н×мм

Н×мм

Н×мм

3. Расчет цилиндрической передачи

3.1 Определение допускаемых контактных напряжений

Допускаемое контактное напряжение определяем по формуле

,

где

- базовый предел контактной выносливости, МПа,

коэффициент безопасности по контактным напряжениям,

- коэффициент долговечности.

Коэффициент долговечности определяется по формуле:

где NH0 - базовое число циклов напряжений,

NHE - расчетное число циклов нагружений.

Расчетное число циклов для постоянного режима работы находим по формуле:

где n - частота вращения, об/мин,

th - долговечность, ч,

С - число нагружений зуба за один оборот зубчатого колеса.

Принимаем для цилиндрической передачи С=1.

Зубчатые колеса изготовляются из стали 12ХН4А с термообработкой зубьев цементацией на глубин (1,0. .1,2) мм. При этом твердость поверхности составит 58. .63 HRC. Принимаем HRC=59.

Предел контактной выносливости поверхности зуба по /2/

МПа.

Коэффициент безопасности S н = 1,2.

Базовое число циклов нагружений при HRC³ 56 принимаем

Рассчитаем число циклов для первой и второй ступени