Сумма моментов:
;Определяем погрешность расчётов:
2.6 Определение мощностей
Потери мощности на трение в поступательных кинематических парах:
Потери мощности на трение во вращательных кинематических парах:
где R – реакция в кинематической паре,H;
– коэффициент трения приведённый; - радиус цапфы вала, м; , - относительная угловая и линейная скорости звеньев, образующих пару, . – коэффициент трения скольжения;Суммарная мощность трения:
Мощность на преодоление полезной нагрузки:
Мгновенная потребляемая мощность:
2.7 Определение кинетической энергии и приведённого момента инерции механизма
Кинетическая энергия механизма равна сумме кинетических энергий звеньев, составляющих механизм, и рассматривается для первого положения механизма.
где
-момент инерции кулисы,За звено приведения принимаем кривошип.
Приведённый момент инерции:
3. Геометрический расчёт эвольвентного зубчатого зацепления
Синтез планетарного редуктора
3.1 Геометрический расчёт равносмещённого эвольвентного зубчатого зацепления
Исходные данные:
число зубьев шестерни:
число зубьев колеса:
модуль зубчатых колёс:
Нарезание зубчатых колес производится инструментом реечного типа, имеющего параметры:
- коэффициент высоты головки зуба - коэффициент радиального зазора - угол профиля зуба рейкиСуммарное число зубьев колёс:
поэтому проектирую равносмещённое зацепление.Делительно-межосевое расстояние:
Начальное межосевое расстояние:
Угол зацепления:
Высота зуба:
Коэффициент смещения:
Высота головки зуба:
Высота ножки зуба:
Делительный диаметр:
Основной диаметр:
Диаметры вершин:
Диаметр впадин:
Толщина зуба:
Делительный шаг:
Основной шаг:
Радиус галтели:
Коэффициент перекрытия:
Коэффициент перекрытия, полученный аналитически:
Масштабный коэффициент построения зацепления:
Расчёт равносмещённого эвольвентного зубчатого зацепления на ЭВМ
Public Sub programma()
m = 5
Z1 = 13
Z2 = 36
ha = 1
c = 0.25
N = (20 * 3.14159) / 180
a = 0.5 * m * (Z1 + Z2)
h = 2.25 * m
x1 = (17 - Z1) / 17: x2 = -x1
ha1 = m * (ha + x1): ha2 = m * (ha + x2)
hf1 = m * (ha + c - x1): hf2 = m * (ha + c - x2)
d1 = m * Z1: d2 = m * Z2
db1 = d1 * Cos(N): db2 = d2 * Cos(N)
da1 = d1 + 2 * ha1: da2 = d2 + 2 * ha2
df1 = d1 - 2 * hf1: df2 = d2 - 2 * hf2
S1 = 0.5 * 3.14159 * m + 2 * x1 * m * Tan(N): S2 = 0.5 * 3.14159 * m + 2 * x2 * m * Tan(N)
P = 3.14149 * m
Pb = P * Cos(N)
Rf = 0.38 * m
Worksheets(2).Cells(10, 2) = a
Worksheets(2).Cells(11, 2) = h
Worksheets(2).Cells(12, 2) = x1
Worksheets(2).Cells(12, 3) = x2
Worksheets(2).Cells(13, 2) = ha1
Worksheets(2).Cells(13, 3) = ha2
Worksheets(2).Cells(14, 2) = hf1
Worksheets(2).Cells(14, 3) = hf2
Worksheets(2).Cells(15, 2) = d1
Worksheets(2).Cells(15, 3) = d2
Worksheets(2).Cells(16, 2) = db1
Worksheets(2).Cells(16, 3) = db2
Worksheets(2).Cells(17, 2) = da1