Диаметр вала в опасном сечении:
d =
; (4.201)d =
= 3,48 мм;Допускаемое напряжение [σИ] выбирают невысоким, чтобы валы имели достаточную жесткость, обеспечивающую нормальную работу зацепления и подшипников. Валы рекомендуется изготавливать из сталей 35, 40, 45, Ст 5, Ст 6, для которых [σИ] = (50 – 60) МПа.
Вычисленное значение диаметра вала d в опасном сечении сравнить с диаметром dK под колесом, найденным при ориентировочном расчете (п. 4.4.2.). Должно выполняться условие: dK ≥ d. При невыполнении этого условия следует принять dK = d и вновь определить размеры вала (п. 4.4.2.).
условие:
dK ≥ d,
где: dK = 35 мм,
35 > 3,48.
Условие выполняется.
4.10 Расчет подшипников качения
В основу расчета подшипников качения положены два критерия: по остаточным деформациям и усталостному выкрашиванию. При частоте вращения кольца n ≤ 10 об/мин критерием является остаточная деформация, и расчет выполняют по статической грузоподъемности Cor; при n > 10 об/мин критерием является усталостное выкрашивание дорожек качения и расчет выполняют по динамической грузоподъемности Cr. Суждение о пригодности подшипника выносится из сопоставления требуемой и базовой грузоподъемностей (Cтр ≤ Сr) или долговечностей (L10h ≥ [L10h]).
Последовательность расчета подшипников качения рассмотрим на примере промежуточного вала:
Частота вращения n2 = 239,5 об/мин;
Базовая долговечность подшипника [L10h] = 20000 ч;
Диметр посадочных поверхностей вала dп = 35 мм;
Действующие силы:
радиальные:
Fr1 = RA = 0,59 кH; и Fr2 = RД = 0,55кН;
осевая:
Fa = 0,43 кН;
Учитывая диаметр посадочных поверхностей вала и характер действующей нагрузки, выбираем радиально – упорный шариковый подшипник 46307, для которого величины статической и динамической грузоподъемностей:
Сor = 24,7 кН; Cr = 42,6 кН;
Схема установки подшипников и действующих сил представлена на рис. 4.13:
Рис. 4.13
Выбираем значения коэффициентов равными: X = 0,41; Y = 0,87; e = 0,68.
Осевые составляющие от радиальных нагрузок:
S1 = e · Fr1 ; (4.204)
S1 = 0,68 · 590 = 401,2 Н;
S2 = e · Fr2 ; (4.205)
S2 = 0,68· 550 = 374 Н;
Суммарные осевые нагрузки на подшипник:
т.к. S1 > S2, Fa >0, то
Fa1 = S1 = 401,2 H; Fa2 = S1 + Fa = 401,2 + 430 = 831,2 Н;
Для опоры, нагруженной большей осевой силой, определяем отношение:
Эквивалентная динамическая нагрузка правой опоры:
P2 = (V · X · Fr2 + Y · Fa2) · Kδ · KT; (4.206)
где: Kδ = 1,3 – коэффициент безопасности;
KT = 1 – температурный коэффициент;
P2 = (1·0,41·550 + 0,87·831,2) ·1, 3 ·1 = 1233,23 Н;
Эквивалентная динамическая нагрузка правой опоры:
P1 = (V·X·Fr1 + Y·Fa1) ·Kδ ·KT; (4.207)
P2 = (1·0, 41·590 + 0, 87·401,2) ·1, 3 ·1 = 768, 22 Н;
Для более нагруженной опоры (правой) определяем долговечность выбранного подшипника 46307:
L10h =
; (4.208)L10h =
;Так как рассчитанная (требуемая) долговечность L10h больше базовой [L10h] (2908990 > 20000), то выбранный подшипник пригоден для данных условий работы.
4.11. Проверка прочности шпоночных соединений
Шкив, зубчатые колеса и муфту насаживают на валы редуктора и предохраняют их от проворачивания призматическими шпонками (рис. 4.14.). Размеры сечения шпонки выбирают в зависимости от диаметра вала в месте установки шпонки.
Рис. 4.14
Рабочая длина шпонки (рис. 4.15.):
Рис. 4.15
lP = lст – b – (5-10); (4.209)
где: lст – длина ступицы зубчатого колеса, шкива или полумуфты, мм;
в – ширина шпонки, мм;
Входной вал:
Шкив: сечение шпонки:
b = 8 мм; h = 7 мм;
Глубина паза:
вала: t1 = 4,0 мм; ступицы: t2 = 3,3 мм;
Шестерня: сечение шпонки:
b = 12 мм; h = 8 мм;
Глубина паза:
вала: t1 = 5,0 мм; ступицы: t2 = 3,3 мм;
Промежуточный вал:
Шестерня: сечение шпонки:
в = 12 мм; h = 8 мм;
Глубина паза:
вала: t1 = 5 мм; ступицы: t2 = 3,3 мм;
Колесо: сечение шпонки:
в = 12 мм; h = 8 мм;
Глубина паза:
вала: t1 = 5 мм; ступицы: t2 = 3,3 мм;
Выходной вал:
Колесо: сечение шпонки:
в = 18 мм; h = 11 мм;
Глубина паза: вала: t1 = 7,0 мм; ступицы: t2 = 4,4 мм;
Муфта: сечение шпонки:
в = 14 мм; h = 9 мм;
Глубина паза:
вала: t1 = 5,5 мм; ступицы: t2 = 3,8 мм;
lPшкив. = 56 – 8 – 8 = 40 мм;
lшкив. = 40 мм;
lPшест. Б = 82 – 12 – 10 = 60 мм;
lшест. Б = 60 мм;
lPколеса. Б = 78 – 12 – 6 = 60 мм;
lколеса. Б = 60 мм;
lPшест. Т = 82 – 12 – 10 = 60 мм;
lшест. Т = 60 мм;
lPколеса. Т = 78 – 18 – 10 = 50 мм;
lколеса. Т = 50 мм;
Часть шпонки, выступающую из вала, проверяют по напряжениям смятия:
σсм =
; (4.210)где: Тi – вращающий момент на валу, Н · мм;
Z – число шпонок;
lP – рабочая длина шпонки, мм;
di – диаметр вала, мм;
h – высота шпонки, мм;
t1 – глубина паза вала, мм;
σсм, [σсм] – рабочее и допускаемое напряжение сжатия, МПа;
σсм1 =
(4.211)σсм1 =
МПа;σсм1 < [σсм]
σсм2 =
(4.212)σсм2 =
МПа;σсм2 < [σсм]
σсм3 =
(4.213)σсм3 =
МПа;σсм3 < [σсм]
σсм4 =
(4.214)σсм4 =
МПа;σсм4 < [σсм]
σсм5 =
(4.215)σсм5 =
МПа;σсм5 < [σсм]
4.12. Выбор и расчет муфт
Муфты выбирают из стандартов или нормалей машиностроения в зависимости от расчетного вращающего момента Тр и диаметров соединяемых валов.
При работе муфта испытывает колебания нагрузки, обусловленные характером работы приводимой в движение машины.
Расчетный вращающий момент, Н·м:
Тр = Кр · ТПВ; (4.216)
где: Кр = 1,5 – коэффициент режима работы для привода от электродвигателя;
ТПВ – момент на приводном валу машины, Н·м;
Тр = 1,5 · 490,99 = 736,5 Н·м;
4.12.1 Расчет фланцевой муфты
Пальцы муфты проверяют на изгиб по сечению А-А (рис. 4.16).
Рис. 4.16
Условие прочности пальца на изгиб:
σН =
; (4.217)где: Тр – расчетный вращающий момент, Н ·мм;
lП – длина пальца, мм;
D0 – диаметр окружности, на которой расположены центры пальцев, мм;
z – число пальцев;
dП – диаметр пальца, мм;
[σН] = 90 МПа – допускаемое напряжение на изгиб для пальцев;
σН =
МПа;47,36<90.
Условие прочности пальцев выполняется.
Резиновая втулка проверяется на смятие:
σСМ =
; (4.218)σСМ =
;4.13. Определение марки масла для зубчатых передач и подшипников
Экономичность и долговечность машины зависят от правильного выбора смазочного материала. Потери на трение снижаются с ростом вязкости смазки, однако повышаются гидромеханические (на перемешивание смазочного материала). Поэтому выбор вязкости масла сводится к определению некоторого относительного ее значения на основе опыта изготовления и эксплуатации узлов машин, рекомендаций теории смазывания.
Ориентировочное значение вязкости масла для смазывания зубчатых передач определяется в зависимости от фактора χЗ.П.:
χЗ.П =
; (4.219)где: НHV – твердость по Виккерсу активных поверхностей зубьев шестерни, МПа;
σН – рабочее контактное напряжение, МПа;
V – окружная скорость в зацеплении, м/с;
НHV1 = 322 МПа; σН1 = 344,36 МПа; V = 1,404 м/с;
χЗ.П =
;НHV2 = 322 МПа; σН2 = 209,2 МПа; V = 3,56 м/с;