Смекни!
smekni.com

Проектирование модуля главного движения станка сверлильно-фрезерно-расточной группы (стр. 1 из 4)

Курсовая работа

Тема: Проектирование модуля главного движения станка сверлильно-фрезерно-расточной группы

Содержание

1 Определение технологического назначения станка, анализ схем обработки и методов формообразования поверхностей деталей

1.1 Определение технологического назначения станка

1.2 Анализ обрабатываемых поверхностей детали

1.3 Сведения о технологическом процессе изготовления детали

1.4 Определение методов формообразования поверхностей

2 Определение функциональных подсистем проектируемого модуля и разработка его структуры

3 Определение основных технологических характеристик модуля

3.1 Основные технологические условия использования проектируемого станка

3.1.1 Виды переходов

3.1.2 Характерные сочетания технологических условий обработки (с учётом технологического процесса)

3.2 Определение предельных режимов работы станка

3.2.1 Определение предельных значений режимов резания

3.2.2 Определение предельных частот вращения шпинделя

3.3 Технические характеристики станков-аналогов

4 Определение компоновок станка и модуля

5 Разработка кинематической схемы модуля

5.1 Выбор электродвигателя

5.2 Определение диапазонов регулирования с постоянной мощностью и постоянным моментом

5.2.1 Определение диапазона регулирования частот вращения

шпинделя

5.2.2 Определение диапазонов регулирования с постоянной мощностью и постоянным моментом

5.3 Определение ряда регулирования переборной коробки

5.3.1 Предварительное определение ряда регулирования переборной коробки

5.3.2 Уточнение знаменателя ряда регулирования коробки и диапазонов регулирования

5.4 Уточнение характеристик электродвигателя

5.5 Выбор типа привода

5.6 Составление структурной сетки привода

5.7 Построение графика частот вращения шпинделя

5.8 Определение передаточных отношений шпинделя

5.9 Определение чисел зубьев передач

6 Расчёты и разработка конструкции модуля с применением ЭВМ

6.1 Расчёт мощности на валах

6.2 Выбор расчётной цепи

6.3 Расчёт максимальных моментов на валах

6.4 Расчёт валов проектный

6.5 Расчёт зубчатых передач проектный

6.6 Расчёт шпиндельного узла

6.6.1 Разработка конструкции шпиндельного узла

6.6.2 Расчет шпиндельного узла на жёсткость

7 Проверочные расчёты

7.1 Проверочный расчёт вала

Список использованной литературы

1 Определение технологического назначения станка, анализ

схем обработки и методов формообразования поверхностей деталей

1.1 Определение технологического назначения станка

Разрабатываемый станок является многоцелевым станком с компьютерным управлением. Он предназначен для обработки корпусных деталей из конструкционных материалов, легких сплавов.

На данном станке можно выполнять сверление, зенкерование, развертывание, растачивание точных отверстий, фрезерование по контуру с линейной и круговой интерполяцией, нарезание резьбы метчиками.

Наличие поворотного стола, устанавливаемого с высокой точностью, расширяет технологические возможности станка, позволяет обрабатывать соосные отверстия консольным инструментом.

Устройство автоматической смены инструмента с инструментальным

магазином барабанного типа монтируется на верхнем торце стойки.

1.2 Анализ обрабатываемых поверхностей детали

В качестве детали-представителя был выбран Фланец маслонасоса ТА6.021.001. Изготавливается в 4 цехе ФГУП “Гидравлика”.

Материал заготовки алюминиевый сплав АК6. Материал-заменитель детали сплав АК9Ч ГОСТ1583-93.

В геометрии детали имеют место как плоские, так и цилиндрические поверхности, обрабатывать которые предпочтительнее всего следующими инструментами: свёрла, фрезы. Сведения о технологическом процессе изготовления детали приведены в пункте 1.3.

Рис 1. Эскиз детали

1.3 Сведения о технологическом процессе изготовления детали

Таблица 1

Сведения о технологическом процессе изготовления детали

Наименование операции Модель оборудования
2045607595100110120125135 Координатно-расточнаяСверлильнаяСверлильнаяСверлильнаяСверлильнаяСверлильнаяКоординатно-расточнаяКоординатно-расточнаяФрезернаяФрезерная 2Д450КМЦ-600КМЦ-600КМЦ-600НС-12НС-122Д4502Д4506Н816М12П

После большинства станочных операций проводятся слесарные операции (напильник, верстак), и, в некоторых случаях промывочные, а также контрольные. Предполагается все операции, кроме токарных выполнить на проектируемом станке.

1.4 Определение методов формообразования поверхностей

Методы формообразования поверхностей рассмотрим на примере детали-представителя.

Предполагается все операции, кроме токарных выполнить на проектируемом станке.

Наименования переходов, состав исполнительных движений, а также методы и схемы обработки поверхностей приведены в таблице 2.

Таблица 2

Основные схемы обработки и методы формообразования

2 Определение функциональных подсистем проектируемого

модуля и разработка его структуры

Станок должен обеспечивать более широкий диапазон частот с постоянной мощностью (постоянным моментом). В целом должен обеспечивать возможность работы на экономических скоростях резания для различных типов деталей, возможность быстрой переналадки в условиях гибкого производства.

Таблица 3

Подсистемы обеспечения параметров исполнительных движений и их особенностей

Наименование подсистем

2 уровня
Подсистемы 3 уровня
наименование обозначение
Обеспечения пуска и остановки (ПО) пуск П
бесступенчатое ускорение УБ
бесступенчатое торможение ТБ
остановка О

Обеспечения скорости

движения (СД)
настройка скоростибесступенчатая НБ
изменение скоростив процессе обработки ИС
стабилизация скорости СТ

Реверсирования

движения (РД)

ПО
выбор направления ВН
соответствия режимовс бесступенчатым изменением РБ

Обеспечения

перемещения (ПМ)
ПО
РД
СД
величины перемещения ВП

Проектируемый мехатронный станок должен обеспечивать высокую точность переходов. Поэтому предлагается применить датчик температуры, чтобы контролировать изменение скорости резания в зависимости от изменения температуры резания. Для реализации работы подсистем НБ11 и СТ23 в целях повышения жесткости механической характеристики двигателя и точности регулирования применяется датчик скорости.

Интеллектуальная система с программно-адаптивным управлением ИС23. Разрабатываемый мехатронный станок будет иметь бесступенчатое регулирование ускорения (и торможения). Станок должен обеспечивать требуемые показатели качества, производительность обработки и требуемые параметры исполнительных движений. Для согласования скоростей и перемещений применим систему согласования параметров, определяющих скорость и величину перемещения (система СК 14). Для большей продолжительности работы резцов и предупреждения их преждевременного износа, а также для максимально возможной экономии энергии (продолжительность работы в станкочасах) станок должен обеспечивать во всех операциях работу на экономических скоростях резания.

Таблица 4.

Сравнительная характеристика функциональных подсистем для проектируемого мехатронного станка и для станка – аналога

С учётом функциональных подсистем проектируемого модуля строим его блок-схему и структуру (Рис 2, Рис 3).

Рис 2. Блок-схема проектируемого модуля

Рис 3. Структура проектируемого модуля

3 Определение основных технологических характеристик модуля

3.1 Основные технологические условия использования проектируемого станка

3.1.1 Виды переходов

На проектируемом станке будут выполняться следующие виды переходов:

а) Контурное фрезерование

б) Фрезерование плоскости

в) Сверление

г) Нарезание резьбы

Характер обработки: предварительная и чистовая

Обрабатываемый материал: АК6.

3.1.2 Характерные сочетания технологических условий обработки (с учётом технологического процесса)

Сверление:

Максимальный диаметр обработки dmax=18 мм

Минимальный диаметр обработки dmin=4 мм

Фрезерование:

Максимальная ширина контакта dmax=40 мм

Нарезание резьбы:

Максимальный диаметр обработки dmax=16 мм

Минимальный диаметр обработки dmin=6 мм

Для нахождения предельных режимов резания необходимо определить максимальные и минимальные обороты шпинделя. Максимальные обороты получаются при использовании инструмента с наименьшим диаметром. Минимальные ─ при использовании инструмента с наибольшим диаметром. В качестве инструментов выбираем фрезу SANDVIK R252.44 ( тв. Сплав с покрытием) и метчик по ГОСТ 3266-81.

3.2 Определение предельных режимов работы станка

3.2.1 Определение предельных значений режимов резания

По каталогу “Станкин” скорость резания при фрезеровании алюминия фрезой диаметром d=40 тв. сплавной с покрытием, при S=0.2, V=1100 м/мин.

С помощью пакета программ “Станкин” [7] рассчитываем составляющие сил резания, максимальные момент и мощность: