Полученное значение округляем до ближайшего большего стандартного значения межосевого расстояния для червячной передачи aw = 125 мм.
Число витков червяка z1 = 2. Число зубьев колеса z2 = z1u = 2×20 = 40. Округляем до целого числа z2 = 40.
Определим модуль зацепления
m = (1,5…1,7)aw/z2 = (1,5…1,7)×125/40 = 4,69…5,31 мм,
округляем в большую сторону до стандартного значения m = 5 мм.
Определяем коэффициент диаметра червяка:
q = (0,212…0,25)z2 = (0,212…0,25)×40 = 8,48…10,00;
округляем в большую сторону до стандартного значения q = 10.
Коэффициент смещения инструмента
х = (aw/m) – 0,5(q + z2) = 0,00.
Определим фактическое передаточное число и проверим его отклонение от заданного:
uф = z2/z1 = 40/2 = 20,00;
(|20,00 – 20|/20)×100% = 0,00 < 4%.Определим фактическое значение межосевого расстояния
aw = 0,5m(q + z2 + 2x) = 0,5×5×(10 + 40 + 2×0,00) = 125,00 мм.
Вычисляем основные геометрические размеры червяка:
делительный диаметр
d1 = qm = 10×5 = 50,0 мм;
начальный диаметр
dw1 = m(q + 2x) = 5×(10 + 2×0,00) = 50,0 мм;
диаметр вершин витков
da1 = d1 + 2m = 50,0 + 2×5 = 60,0 мм;
диаметр впадин витков
df1 = d1 – 2,4m = 50,0 – 2,4×5 = 38,0 мм;
делительный угол подъема линии витков
g = arctg(z1/q) = arctg(2/10) = 11,31°;
длина нарезаемой части червяка
b1 = (10 + 5,5|x| + z1)m + C = (10 + 5,5|0,00| + 2)×5 + 0 = 60,0 мм,
округляем до значения из ряда нормальных размеров b1 = 60 мм.
Основные геометрические размеры венца червячного колеса:
делительный диаметр
d2 =dw2 = mz2 = 5×40 = 200,0 мм;
диаметр вершин зубьев
da2 = d2 + 2m(1 + x) = 200,0 + 2×5×(1 + 0,00) = 210,0 мм;
наибольший диаметр колеса
daм2 ≤ da2 + 6m/(z1 + 2) = 210,0 + 6×5/(2 + 2) = 217,5 мм;
диаметр впадин зубьев
df2 = d2 – 2m(1,2 – x) = 200,0 – 2×5×(1,2 – 0,00) = 188,0 мм;
ширина венца
b2 = 0,355aw = 0,355×125,00 = 44,4 мм,
округляем до значения из ряда нормальных размеров b2 = 45 мм;
условный угол обхвата червяка венцом колеса
2d = 2×arcsin(b2/(da1 – 0,5m)) = 2×arcsin(45/(60,0 – 0,5×5)) = 103°.
Определим силы в зацеплении
окружная сила на колесе, равная осевой силе на червяке
Ft2 = Fa1 = 2000T2/d2 = 2000×294/200,0 = 2940 Н;
окружная сила на червяке, равная осевой силе на колесе
Ft1 = Fa2 = 2000T2/(uфd1) = 2000×294/(20,00×50,0) = 588 Н;
радиальная сила, раздвигающая червяк и колесо
Fr = Ft2tg20° = 2940×0,364 = 1070 Н.
3.4 Проверочный расчёт червячной передачи
Фактическая скорость скольжения
vS = uфw2d1/(2cosg×103) = 20,00×7,51×50,0/(2×cos11,31°×103) = 3,83 м/с.
Определим коэффициент полезного действия передачи
h = tgg/tg(g + j) = tg11,31°/tg(11,31 + 2)° = 0,85,
где j – угол трения, зависящий от фактической скорости скольжения, град [1, таблица 4.9].
Проверим контактные напряжения зубьев колеса
где K – коэффициент нагрузки;
[s]Н – допускаемое контактное напряжение зубьев колеса, уточненное по фактической скорости скольжения, Н/мм2 [1, таблица 3.6]
sH = 340×(2940×1/(50,0×200,0))1/2 = 184,4 ≤ 198,6 Н/мм2.
Полученное значение контактного напряжения меньше допустимого на 7,2%, условие выполнено. Проверим напряжения изгиба зубьев колеса
sF = 0,7YF2Ft2K/(b2m) ≤ [s]F,
где YF2 – коэффициент формы зуба колеса, который определяется по [1, таблица 4.10] в зависимости от эквивалентного числа зубьев колеса:
zv2 = z2/cos3g = 40/cos311,31° = 42,
тогда напряжения изгиба равны
sF = 0,7×1,53×2940×1/(45×5) = 14,0 ≤ 43,9 Н/мм2,
условие выполнено.
3.5 Расчет червячной передачи на нагрев
Определяем площадь поверхности охлаждения корпуса редуктора:
А» 12,0aw1,7 = 12,0×0,1251,7 = 0,35 м2,
Где aw – межосевое расстояние червячной передачи, м.
Температура нагрева масла в масляной ванне редуктора:
где h – КПД червячной передачи;
P1 – мощность на червяке, кВт;
KT – коэффициент теплоотдачи, Вт/(м2×°С);
y – коэффициент, учитывающий отвод тепла от корпуса редуктора в металлическую раму;
t0 = 20 °С – температура окружающего воздуха;
[t]раб = 95 °С – максимально допустимая температура нагрева масла в масляной ванне редуктора, °С.
tраб = 1000×(1 – 0,85)×2,79/(17×0,35×(1 + 0,3)) = 75,8 °С.
4. Предварительный расчет валов и выбор подшипников
Быстроходный вал (вал-червяк):
d1 = (0,8…1,2)×dдв = (0,8…1,2)×28 = 22,4…33,6 мм,
где dдв – диаметр выходного конца вала ротора двигателя, мм.
Из полученного интервала принимаем стандартное значение d1 = 25 мм. Длина ступени под полумуфту:
l1 = (1,0…1,5)d1 = (1,0…1,5)×25 = 25…37,5 мм,
принимаем l1 = 40 мм.
Размеры остальных ступеней:
d2 = d1 + 2t = 25 + 2×2,2 = 29,4 мм, принимаем d2 = 30 мм;
l2» 1,5d2 = 1,5×30 = 45 мм, принимаем l2 = 45 мм;
d3 = d2 + 3,2r = 30 + 3,2×2 = 36,4 мм, принимаем d3 = 37 мм;
d4 = d2.
Тихоходный вал (вал колеса):
(294×103/(0,2×35))1/3 = 34,76 мм, принимаем d1 = 35 мм;l1 = (0,8…1,5)d1 = (0,8…1,5)×35 = 28…52,5 мм, принимаем l1 = 50 мм;
d2 = d1 + 2t = 35 + 2×2,5 = 40 мм, принимаем d2 = 40 мм;
l2» 1,25d2 = 1,25×40 = 50 мм, принимаем l2 = 50 мм;
d3 = d2 + 3,2r = 40 + 3,2×2,5 = 48 мм, принимаем d3 = 48 мм;
d4 = d2;
d5 = d3 + 3f = 48 + 3×1,2 = 51,6 мм, принимаем d5 = 53 мм;
Предварительно назначаем роликовые конические однорядные подшипники легкой серии:
для быстроходного вала: 7206A;
для тихоходного: 7208A.
5. Конструирование корпуса редуктора
Определим толщину стенки корпуса
d = 1,2 Т1/4 = 1,2∙(294)1/4 = 4,97³ 6 мм,
где Т = 294 Н∙м – вращающий момент на тихоходном валу.
Принимаем d = 6 мм.
Зазор между внутренними стенками корпуса и деталями
а = (L)1/3 + 3 = 2641/3 + 3 = 9 мм.
Расстояние между дном корпуса и поверхностью колеса b0 » 4a= 36 мм.
Диаметры приливов для подшипниковых гнезд:
вал 1:
для привертной крышки DП = Dф + 6 = 87 + 6 = 93 мм.
вал 2:
для закладной крышки D'П = 1,25D + 10 = 1,25∙80 + 10 = 110 мм,
где D – диаметр отверстия под подшипник, Dф – диаметр фланца крышки подшипника.
Диаметры винтов привертных крышек подшипника: d1 = 6 мм;
Число винтов: z1 = 4.
Диаметр винтов крепления крышки к корпусу находим по формуле
d = 1,25(Т)1/3 = 1,25∙(294)1/3 = 8,31 ≥ 10 мм,
где Т – момент на тихоходном валу редуктора. Принимаем d = 10 мм.
Размеры конструктивных элементов крепления крышки редуктора к корпусу (для болтов):
ширина фланца крышки корпуса K = 2,35d = 23,5 мм,
расстояние от торца фланца до центра болта С = 1,1d = 11,0 мм.
диаметр канавки под шайбочку D» 2d = 20 мм.
высота прилива в корпусе h = 2,5d = 25 мм.
Для винтов: K1 = 2,1d = 21,0 мм, С1 = 1,05d = 10,5 мм.
Высоту прилива в крышке под стягивающий болт (винт) определяем графически, исходя из условия размещения головки болта (винта) на плоской опорной поверхности вне кольцевого прилива под подшипник большего диаметра. Диаметр штифта dшт = 0,75d = 8 мм.
Диаметр винта крепления редуктора к раме dф = 1,25d = 14 мм, количество винтов z = 4. Высота ниши h0= 2,5(dф + d) = 50 мм, длина опорной поверхности в месте крепления редуктора к раме l = 2,4dф + d = 40 мм, высота прилива под винт h = 1,5dф = 21 мм, расстояние от боковой поверхности корпуса до центра винта с = 1,1dф = 15 мм.
Размеры проушины в виде ребра с отверстием: толщина ребра s = 2,5d = 15 мм, диаметр отверстия d = 3d = 18 мм, радиус проушины R = d. Размеры проушины, выполненной в виде сквозного отверстия в крышке: сечение (b´b) отверстия b = 3d = 18 мм, радиус дуги из вершины крышки для определения границы отверстия а = 1,7d = 10 мм.
6. Проверочный расчет шпонок
6.1 Быстроходный вал
Шпонка под полумуфту призматическая со скругленными краями по ГОСТ 23360-78: сечение 8´7, длина 32 мм, диаметр вала d = 25 мм.
Определяем напряжение смятия
,где T – передаваемый момент, Н∙м;
d – диаметр вала, мм;
lp – рабочая длина шпонки, мм;
h – высота шпонки, мм;
t1 – глубина паза, мм.
sсм = 2∙103∙19/(25∙24∙(7 – 4)) = 21 МПа.
Полученное значение не превышает допустимого [s]см = 100 МПа.
6.2 Тихоходный вал