Смекни!
smekni.com

Проектирование привода (стр. 2 из 4)

Для определения окружной скорости воспользуемся формулой:

V=n1у* (T2/U2 * Ψa) 1/3=727/1600* (477,5/0,4*0.25) 1/3=1,9м/с, где

n1=727 мин -1 - частота вращения быстроходного вала редуктора

су=1600 - коэффициент учитывающий влияние термообработки на свойства материала зубчатого колеса

T2 - критический момент

U - заданное передаточное число

Ψa - коэффициент ширины зубчатого колеса передачи

Для вычисленной окружной скорости рекомендуется восьмая ступень точности, которую выбираем по [1] из таблицы 5,5

КНυ=1,02 и К=1.06

КН=1*1.02=1.02

КF=1*1,06=1,06

1.5 Проектный расчет закрытой цилиндрической передачи быстроходной ступени

Основные размеры зубчатой передачи определяем из расчета на контактную выносливость.

Значение межосевого расстояния:

, где

8500 - коэффициент определяемый выражением ZM ZH ZΣ0.7 (см. ГОСТ 21354-75 "Расчет на прочность")

Т2 - номинальный крутящий момент на валу колеса

U - заданное передаточное число

КН - коэффициент нагрузки при расчете на контактную выносливость

КНα - коэффициент учитывающий распределение нагрузки между зубьями ([1] Рис.6,2);

[σ] Н - допускаемое напряжение при расчете на контактную выносливость

Ψa = 0,4 - коэффициент ширины зубчатых колес передачи

Полученное значение α округляем до значения a=140 мм из ряда Ra 40 по ГОСТ 6636-69

Рабочая ширина венца.

Рабочая ширина колеса:

b2= Ψa*а=0,25*140=35 мм

Ширина шестерни:

b1=b2+3=38 мм

Модуль передачи.

, принимаем

Полученное значение модуля mn=1.4 округляем до ближайшего большего значения m=1.5 по ГОСТ 9563-60

Суммарное число зубьев и угол наклона зубьев.

βmin=arcsin (4mn/b2) =arcsin (4*1.5/35) =9,55o

ZΣ=Z2+Z1=2*a*cos βmin/mn= (2*140*cos9,55) /1,5=184,32

ZΣ=184, Cosβ= ZΣ*mn/2a=184*1.5/2*140=0.9857

β=9,6>9,55=βmin

Число зубьев шестерни Z1 и колеса Z2.

Z1=Z Σ/U+1=184/4,8+1=30,345округляем до целого числа Z1=30

Z2= Z Σ - Z 1=184-30=154

Фактическое значение передаточного числа.

U= Z 2/ Z 1=154/30=5

Проверка зубьев колес на изгибную выносливость.

А) зуб колеса:

, где

Т2 - номинальный крутящий момент на валу колеса, KF=1,06 - коэффициент нагрузки при расчете на изгибную выносливость, K=0,91 - коэффициент, учитывающий распределение нагрузки между зубьями ([1] Рис.6,2), YF2=3,61 - коэффициент формы зуба ([1] Рис.6,2)

Значение YF выбираем в зависимости от эквивалентного числа зубьев Zv.

Zv2=Z2/cos3β=154/cos39,6=160

Y β - коэффициент учитывающий наклон зуба, Y β = 1- (β/140) =1-0,072=0,931, b2 - рабочая ширина колеса, mn – модуль, а - межосевое расстояние, U - заданное передаточное число, [σ] F2=293 МПа - допускаемое напряжение при расчете на изгибную выносливость

σF2= (477,5*103*1,06*3,61*0,931*0,91*5,8) / (35*1.5*140*4,8) =222< [σ] F2=293Мпа

Б) зуб шестерни:

σF1= σF2*YF1/ YF2< [σ] F1, где

σF2 =222 МПа - напряжение при расчете зубьев на изгибную выносливость

YF1=3,4- коэффициент, учитывающий форму зуба

[σ] F1=314 МПа - допускаемое напряжение при расчете на изгибную выносливость

σF1=222*3,4/3,61=209МПа < [σ] F1=314Мпа

Определение диаметров делительных окружностей d.

d1=mn/cosβ*Z1=1,5/0,986*30=45,6 мм

d2=mn/cos β*Z2=1,5/0,986*154=234,4мм

Выполним проверку полученных диаметров.

d2+ d1=2а

45,6+234,4=2*140=250 - верно

Диаметры окружностей вершин и зубьев и впадин зубьев df и da:

1= d1+2 mn=45,6+1,5*2=48,6мм

dа2= d2+2 mn=237,4мм

df1= d1-2,5mn=45,6+2,5*1,5=41,85мм

df4= d2-2,5 mn=234,4-2,5*1,5=230,65мм

Проверка возможности обеспечения принятых механических характеристик при термической обработки заготовок.

Шестерни проверяем по значениям D, а колеса по S.

Наружный диаметр заготовки шестерни:

D=da1+6=54,6 мм < D=125 мм

Толщина сечения обода колеса:

S=8m=8*1,5=12 мм < S=80 мм, следовательно требуемые механические характеристики могут быть получены при термической обработки заготовки.

Силы действующие на валы зубчатых колес.

Окружная сила:

Ft=2T2*103/d2=2*477,5*1000/234,4=4074H

Радиальная сила:

FR= Ft*tgαn/cosβ=4074*tg20o/cos9,6o=1482,5Н

Осевая сила: Fa= Fttgβ=4074* tg9,6=684Н

1.6 Выбор материала и определение допускаемых напряжений тихоходной ступени

Таблица 4.

Колесо Z4 Шестерня Z3
Сталь 40Х улучшениеНВ2=269…302НВ2ср=285σT = 750 МПа Сталь 40ХН улучшение, закалка зубьев ТВЧНRC=48…53НRC1ср=50,5σT = 750 МПа

Определяем коэффициенты приведения. Реакцию с периодической нагрузкой заменяем на постоянный, эквивалентный по усталостному воздействию, используя коэффициент приведения КЕ.

КНЕ - коэффициент приведения для расчета на контактную прочность

К- коэффициент приведения для расчета на изгибающую прочность

КНЕ2=0,25КFЕ2=0,14 КНЕ1=0,25КFЕ1=0,1

Число циклов перемены напряжений.

NG - число циклов перемены напряжений, соответствующее длительному пределу выносливости. NHG - число циклов перемены напряжений, для расчета на контактную выносливость. (определяем по рис.4.3 [1]). NFG - число циклов перемены напряжений для расчета передачи на изгибную выносливость (принимаем независимо от твердости материала рабочих поверхностей зубьев)

NHG2=20*106NFG2=4*106 NHG1=100*106NFG1=4*106

Суммарное время работы передачи t=24000 ч.

Суммарное число циклов нагружения.

N∑2= =60t*n2*nз2=60*24000*34=49*106t - суммарное время работы передачиn2 - частота вращения колесаnз2 - число вхождений в зацепление зубьев колеса за 1 оборот N∑1=N∑2*U*nз1/nз2==49*106*4,4=215,6*106N∑2 - суммарное число циклов нагружения колесаnз1 - число вхождений в зацепление зубьев шестерни за 1 оборот

Эквивалентное число циклов перемены напряжения

А) контактная выносливость

NНЕ2НЕ2*N∑2= =0,25*49*106=12,25*106 NНЕ1НЕ1*N∑1= 0,25*215,6*106=54*106

Сравним полученные значения NНЕ с табличным значением NНG:

NНЕ2=12,25*106<NHG2=20*106Принимаем N=12,25*106 NНЕ1=54*106<NHG1=100*106Принимаем NHЕ1=54*106

Б) изгибная выносливость

NFЕ2FЕ2*N∑2=0,14*49*106==6.86*106 NFЕ2FЕ2*N∑2=0,1*215,6*106==21,56*106

Сравним полученные значения Nс табличным значением NFG:

NFЕ2=6,86*10>NFG2=4*106 NFЕ1=21,56*106> NFG1=4*106Принимаем NFЕ2=NFЕ1=NFG1=4*106

Определение предельных допускаемых напряжений для расчетов на прочность.

Н] max и [σF] max - предельные допускаемые напряжения

σт - предел текучести материала

Н] max2=2,8* σт=2,8*750=2100 МПа[σF] max2=2,74*НВ2ср=2,74*285= 780Мпа Н] max1=40HRCпов=40*50.5=2020 МПа[σF] max1=1430МПа

Определение допускаемых напряжений для расчета на контактную выносливость.

Н] = [σ0] Н* (NHG/ NHE) 1/6< [σН] max, где

0] Н - длительный предел контактной выносливости

Н] - допускаемое контактное напряжение при неограниченном ресурсе

Н] max - предельное допускаемое контактное напряжение

0] Н2= (2*НВср+70) /SH0] Н1= (17*НRCпов) /SH

0] Н2= (2*285+70) /1.1=582 МПаSH2=1.1[σ] Н2=582* (20*106/12,25*106) 1/6==640 МПа 0] Н1= (17*50.5+200) /1.2=882 МПаSH2=1.2[σ] Н1=882* (100*106/54*106) 1/6==979 МПа

Так как разница твёрдостей HB1ср-НВ2ср=220Мпа>=70Мпа и НВ2ср=285Мпа<350Мпа то:

σН= ([σ] Н2+ [σ] Н1) *0.45=729Мпа

σН=1.23 [σ] Н2=787Мпа

За расчетное допускаемое напряжение принимаем меньшее из 2-х значений допускаемых напряжений [σ] Нрасч=729МПа.

Определение допускаемых напряжений для расчета на изгибную выносливость.