для колеса zυ2= z2/ cos δ2
для шестерни zυ1= 25/ cos 11о =26
для колеса zυ2= 125/ cos 79о=655
Yf1– коэффициент формы зуба шестерни, Yf1=3,88(1.стр.42)
Yf2– коэффициент формы зуба колеса, Yf2=3,60(1.стр.42)
Допускаемое контактное напряжение [σf], МПа, вычисляют по формуле
[σf]=(G0limb)/[Sf],
где G0limb–предел контактной выносливости при базовом числе циклов
для шестерни G0limb=1,8*270=490 МПа
для колеса G0limb=1,8*245=440 МПа
[Sf]–коэффициент безопасности, [Sf]=1,75(1.стр.344).
Допускаемое напряжение [σf1], [σf2] вычисляют по формуле
для шестерни [σf1]=490/1,75=280 МПа
для колеса [σf2]=440/1,75=251 МПа
Находим отношение [σf]/Yf
для шестерни 280/3,88=72 МПА
для колеса 251/3,60=70 МПа
Дальнейший расчет следует вести для зубьев колеса, для которого найдено
меньшее отношение
σf=( Ft*Kf*Yf2)/(b*m)< [σf]
σf=( 3444*1,49*3,60)/(65,4*3,08)=91,7 МПа< [σf]=251 МПа
Условие прочности выполнено
2.2.7 Проверка долговечности подшипников
Таблица 3–Подшипники в редукторе
Условное
обозначение
подшипника d D B C C0
мм кН
107 35 62 14 15,9 8,5
408 40 110 27 63,7 36,5
Ведущий вал
Ft1=1328 H Fr1=483 H
l1=0,05 м
Вертикальная плоскость
∑М2=0
Ry1*2*l1-Fr1*l1=0
Ry1= Fr1*l1/(2*l1)
Ry1= 483*0,07/(2*0,07)=241,5 Н
∑М1=0
Fr1*l1-Ry2*2*l1=0
Ry2= (Fr1*l1)/(2* l1)
Ry2=(483*0,05)/(2* 0,05)=241,5 Н
Проверка
∑Fiy=0
- Ry2-Ry1+Fr1=0
-241,5-241,5+483=0
Горизонтальная плоскость
Rx2= Rx1= Ft1/2
Rx2= Rx1=1328/2=664 Н
Суммарную реакцию Pr, H, вычисляют по формуле
Pr=√ (Rx)2+ (Ry)2
Pr1=√6642+241,52=707 Н
Pr2=√6642+241,52=707 Н
Осевую нагрузку подшипников Pa, Н, вычисляют по формуле
Pa=Fa1
Pa= 0 Н
Рассмотрим правый подшипник
Отношение
Pa/ C0=0/8500=0
Отношение
Pa/ Pr2=0/707=0<e
Эквивалентную нагрузку Pэ2, Н, вычисляют по формуле
Pэ2=V*Pr2*Kб*Kт,
где V–коэффициент, V=1(1.П7);
Kб– коэффициент, Kб=1,2(1.табл.9.19);
Kт– коэффициент, Kт=1(1.табл.9.20).
Pэ2= 1*707*1,2*1=848,4 Н
Расчетную долговечность L2, млн.об, вычисляют по формуле
L2=(C/Pэ2)3,
где C–динамическая грузоподъемность, C=15,9 кН (табл.2).
L2=(15,9/0,85)3=6 500 млн.об.
Расчетную долговечность Lh2, ч, вычислят по формуле
Lh2=(L2*106)/(60*n),
где n–частота вращения ведущего вала, n=949 об/мин (табл.1).
Lh2=(6 500*106)/(60*949)≈ 115 000ч
Данная долговечность приемлема
Ведомый вал
Ft2=1328 H Ft3=3444 H l3=0,08 м
Fr2=483 H Fr3=1230 H d3/2= 0,039 м
l2=0,05 мFa3=1230 H
Вертикальная плоскость
∑М4=0
-Ry3*2*l2+Fr2*l2-Fr3*l3+Fa3*d3/2=0
Ry3= (Fr2*l2-Fr3*l3+Fa3*d3/2)/ (2*l2)
Ry3= (483*0,05-1230*0,08+1230*0,039)/ (2*0,05)= -262,8 Н
∑М3=0
Ry4*2*l2-Fr2*l2-Fr3*(l3+2* l2)+Fa3*d3/2=0
Ry4= (Fr2*l2+Fr3*(l3+2* l2)-Fa3*d3/2)/ (2*l2)
Ry4= (483*0,05+1230*(0,08+2*0,05)-1230*0,039)/ (2*0,05)=1975,8 Н
Проверка
∑Fiy=0
Ry3+Ry4- Fr2- Fr3 = 0
-262,8+1975,8 - 483 -1230 = 0
Горизонтальная плоскость
∑М4=0
Rx3*2*l2-Ft2*l2-Ft3*l3=0
Rx3= (Ft2*l2+Ft3*l3)/( 2*l2)
Rx3=(1328*0,05+3444*0,08)/( 2*0,05)=3419,2 Н
∑М3=0
Rx4*2*l2+Ft2*l2-Ft3*(l3+2*l2)=0
Rx4=(Ft3*(l3+2*l2)- Ft2*l2)/( 2*l2)
Rx4= (3444*(0,08+2*0,05)- 1328*0,05)/( 2*0,05)=5535,2 Н
Проверка
∑Fix=0
-Rx3+Rx4+Ft2- Ft3 = 0
-3419,2+5535,2+1328-3444=0
Суммарную реакцию Pr, H, вычисляют по формуле
Pr=√ (Rx)2+ (Ry)2
Pr3=√3419,22+262,82=3429 Н
Pr4=√5535,22+1975,82=5877 Н
Осевую нагрузку подшипников Pa, Н, вычисляют по формуле
Pa=Fa3
Pa= 1230 Н
Рассмотрим правый подшипник
Отношение
Pa/ C0=1230/36500=0,033
Отношение
Pa/ Pr4=1230/5877=0,21<e=0,24
Эквивалентную нагрузку Pэ4, Н, вычисляют по формуле
Pэ4=V*Pr4*Kб*Kт,
где V–коэффициент, V=1(1.П7);
Kб– коэффициент, Kб=1,2(1.табл.9.19);
Kт– коэффициент, Kт=1(1.табл.9.20).
Pэ4= 1*5877*1,2*1=7052 Н
Расчетную долговечность L4, млн.об, вычисляют по формуле
L4=(C/Pэ4)3,
где C–динамическая грузоподъемность, C=63,7 кН (табл.2).
L4=(63,7/7,052)3= 737 млн.об.
Расчетную долговечность Lh4, ч, вычислят по формуле
Lh4=(L4*106)/(60*n),
где n–частота вращения ведомого вала, n=237,3 об/мин(табл.1).
Lh4=(737*106)/(60*237,3)≈ 52 000 ч
Данная долговечность приемлема
2.2.8 Уточненный расчет валов
Принимаем для валов Сталь 45, термическая обработка–нормализация.
Пределы выносливости σ-1, τ-1, МПа вычисляют по формуле
σ-1=0,43*[σв]
τ-1=0,58* σ-1,
где [σв]–предел прочности, [σв]=570 МПа (1.табл.3.3).
σ-1=0,43*570=245 МПа
τ-1=0,58*245=142 МПа
Ведущий вал
Сечение А-А (под муфтой)
Концентрация напряжений вызвана наличием шпоночной канавки.
Изгибающий момент М1, Н*мм, по ГОСТ 16162-78 вычисляют по формуле
М1=2,5*√T1*(L/2),
где L–длина посадочного участка полумуфты, L=0,08 м.
М1=2,5*√33,2*1000*(0,08/2)=18,2 Н*мм
Момент сопротивления сечения W1, мм3, вычисляют по формуле
W1=π*(dв1)3/32-(b1*t1*(dв1-t1)2/(2*dв1)),
W1=3,14*(30)3/32-(10*5*(30-5)2/(2*30))=2,13*103 мм3
Амплитуду и максимальное напряжение цикла по нормальным напряжениям συ, МПа, вычисляют по формуле
συ= σmax= М1/ W1
συ= σmax=18,2*103/2,13*103=8,5 МПа
Коэффициент запаса прочности по нормальным напряжениям sυ вычисляют по формуле
sσ= σ-1/(( kσ/ εσ)* συ),
где kσ=1,6 (1.табл.8.5);
εσ=0,88 (1.табл.8.8).
sσ= 245/((1,6/0,88)*22,2)=6,07
Момент сопротивления кручению Wк1, мм3, вычисляют по формуле
Wк1=π*(dк1)3/16-(b1*t1*(dк1-t1)2/(2*dк1)),
Wк1= 3,14*(30)3/16-(10*5*(30-5)2/(2*30))=4,23*103 мм3
Амплитуду и среднее напряжение цикла касательных напряжений τυ, МПа,
вычисляют по формуле
τυ= τm= τmax/2=0,5*T1/ Wк1
τυ= τm= τmax/2=0,5*33,2*103/4,23*103=3,92 МПа
Коэффициент запаса прочности по касательным напряжениям sτ вычисляют по формуле
sτ= τ-1/(( kτ/ ετ)* τυ+ψττm),
где kτ=1,5 (1.табл.8.5);
ετ=0,77 (1.табл.8.8);
ψτ–коэффициент, ψτ=0,1.
sτ= 142/((1,5/0,77)*3,92+0,1*3,92)=17,15
Коэффициент запаса прочности s вычисляют по формуле
s= (sσ* sτ)/(√( sσ)2+( sτ)2)≥[s]
s= (6,07*17,15)/(√(6,07)2+(17,15)2) = 5,72>[s]=2
Полученный коэффициент соответствует нормативам
Ведомый вал
Сечение Б-Б
Концентрация напряжений вызвана напрессовкой подшипника.
Суммарный изгибающий момент М2, Н*мм, вычисляют по формуле
М2=√(Mx2)2+(My2)2,
где Mx2, My2–изгибающие моменты под правым подшипником,
Mx2=50,43*103 Н*мм
My2=275,52*103 Н*мм
М2=√50,43*103)2+(275,52*103)2=280*103 Н*мм
Момент сопротивления сечения Wнетто2, мм3, вычисляют по формуле
Wнетто2=π*(dп2)3/32
Wнетто2=3,14*(40)3/32)=6,28*103 мм3
Амплитуду и максимальное напряжение цикла по нормальным напряжениям συ, МПа, вычисляют по формуле
συ= σmax= М2/ W2
συ= σmax=280*103/6,28*103=44,6 МПа
Коэффициент запаса прочности по нормальным напряжениям sυ вычисляют по формуле
sσ= σ-1/(( kσ/ εσ)* συ),
где kσ/ εσ =2,7 (1.табл.8.7);
sσ= 245/(2,7*44,6)=2,04
Момент сопротивления кручению Wкнетто2, мм3, вычисляют по формуле
Wкнетто2=π*(dп2)3/16
Wкнетто2= 3,14*(40)3/16=12,56*103 мм3
Амплитуду и среднее напряжение цикла касательных напряжений συ, МПа,
вычисляют по формуле
τυ= τm= τmax/2=0,5*T2/ Wкнетто2
τυ= τm= τmax/2=0,5*132,8*103/12,56*103=5,29 МПа
Коэффициент запаса прочности по касательным напряжениям sτ вычисляют по формуле
sτ= τ-1/(( kτ/ ετ)* τυ+ψττm),
где kτ/ ετ =2,02 (1.табл.8.7);
ψτ–коэффициент, ψτ=0,1.
sτ= 142/(2,02*5,29+0,1*5,29)=12,7
Коэффициент запаса прочности s вычисляют по формуле
s= (sσ* sτ)/(√( sσ)2+( sτ)2)≥[s]
s= (2,04*12,7)/(√(2,04)2+(12,7)2)=2,02>[s]=2
Полученный коэффициент соответствует нормативам
Таблица 4–Коэффициенты запаса прочности в опасных сечениях
Опасные сечения А-А Б-Б
Коэффициент запаса прочности s 5,72 2,02
Во всех сечениях s>[s]=2
2.2.9 Проверка прочности шпоночных соединений
Шпонка под полумуфтой
dв1=30 мм
b×h×l= 10×8×60
t1=5 мм
T1=33,2 Н*м
Напряжение смятия σсм, МПа, вычисляют по формуле
σсм=2*T2/( dв1*(h-t)*(l-b))≤ [σсм]
σсм=2*33,2*1000/( 30*(8-5)*(60-10))=14,75 МПа< [σсм] =120 МПа
Условие прочности выполнено
Шпонка под колесом
dк2=45 мм
b×h×l= 14×9×50
t=5,5 мм
T2=132,8 Н*м
σсм=2*132,8*1000/( 45*(9-5,5)*(50-14))=46,8 МПа< [σсм] =120 МПа
Условие прочности выполнено
Шпонка под конической шестерней
dв2=35 мм
b×h×l= 10×8×60
t=5 мм
T2= 132,8 Н*м
σсм=2*132,8*1000/( 35*(8-5)*(60-10))= 50,6 МПа< [σсм] =120 МПа
Условие прочности не выполнено, ставлю 2 шпонки.