Из приведенных восьми формул могут быть найдены восемь коэффициентов a10, a11, a12, a13, a20, a21, a22, и a23 (см.домашнее задание 6)
Рис. 4.7.5. Сложное движение манипулятора.
ОБЩИЕ АСПЕКТЫ ПЛАНИРОВАНИЯ ТРАЕКТОРИЙ
Вообще говоря, при планировании траектории робота нужно учитывать следующие обстоятельства.
1. Когда схват поднимает предмет, его движение должно быть направлено от опорной поверхности, чтобы избежать столкновения с ней.
2. Конечная точка подъема предмета должна лежать на нормали к поверхности, а начало системы координат схвата должно пройти через эту точку. Таким образом, будет обеспечено допустимое движение схвата. Контроль за скоростью, с которой должен подниматься предмет, может осуществляться путем слежения за временем, требуемым для перехода в эту точку.
3. Расстояние от конечной точки подъема до опорной поверхности рекомендуется выбирать равным не меньше 25 % длины последнего звена робота (0.25d6 + длина инструмента) (рис. 4.8.1).
4. Требования 1 - 3 относятся и к начальной точке спуска, т. е. схват должен перемещаться в направлении, перпендикулярном поверхности, и замедляться при подходе к опорной поверхности.
5. Из приведенных выше соображений следует, что на каждой траектории робота имеются четыре типа точек - начальная точка, конечная точка подъема, начальная точка спуска, конечная точка (рис. 4.8.2).
Таким образом, на процесс планирования траектории можно наложить следующие ограничения.
1. Начальное положение фиксировано.
2. Начальная скорость обычно равна нулю.
3. Начальное ускорение обычно равно нулю.
4. Конечное положение фиксировано.
5. Конечная скорость обычно равна нулю.
6. Конечное ускорение обычно равно нулю.
7. Конечная точка подъема должна находиться от опорной поверхности на расстоянии 0.25 d6 + длина инструмента.
8. Начальная точка спуска должна находиться от опорной поверхности на расстоянии 0.25 d6 + длина инструмента.
Рис. 4.8.1. Рекомендуемая конечная точка подъема.
Рис. 4.8.2. Типичная траектория движения i-го сочленения.
К перечисленным выше ограничениям можно также добавить, ограничения на скорость и ускорение в промежуточных положениях, т. е. в точках подъема и спуска. Однако, опустив эти ограничения, мы будем иметь восемь ограничений, которые можно было бы удовлетворить полиномом с неизвестными коэффициентами не менее чем седьмой степени. Так, для любого угла в сочленении
iможно записать i(t) = anitn, (4.8.1)где ani - элементы матрицы размера 8 xi.
Так как это выражение - полином седьмой степени, возможно, он будет иметь значительное число экстремумов (максимумов и минимумов), что было бы нежелательно для траекторий перемещения роботов. Кроме того, вычисление всех неизвестных коэффициентов может занять много времени (если i = 6,имеем 48 коэффициентов).
Ограничения, относящиеся к траекториям сочленений
Описание ограничения | Уравнения ограничения | |
1234567891011121314 | Начальное положение схвата Начальная скорость робота Начальное ускорение роботаКонечное положение робота при захвате Непрерывность по положению в момент t1 Непрерывность по скорости в момент t1Непрерывность по ускорению в момент t1Начальное положение робота при установкеНепрерывность по положению в момент t2Непрерывность по скорости в момент t2Непрерывность по ускорению в момент t2Конечное положение робота Конечная скорость робота Конечное ускорение робота | i(t0) = *i0 i(t0) = *i0 i(t0) = *i0 i(t1) = *i1 i(t1-) = i(t1+) i(t1-) = i(t1+) i(t1-) = i(t1+) i(t2) = *i2 i(t2-) = i(t2+) i(t2-) = i(t2+) i(t2-) = i(t2+) i(t3) = *i3 i(t3) = *i3 i(t3) = *i3 |
Рис. 4.8.3. Применение робота в лазерной резке.
Нужно также найти экстремальные значения на траектории перемещения робота с тем, чтобы убедиться, что эти экстремумы не выходят за рабочую поверхность. Таким образом, желательно прибегнуть к полиномам низких степеней путем деления траектории на участки, для которых вычисления выполняются сравнительно легко. Преимуществом таких полиномов низких степеней является то, что для них легче вычислить неизвестные коэффициенты и найти корни их производных при вычислении экстремумов.
Все такие разделенные на участки траектории должны быть непрерывны по положению, скорости и ускорению для достижения плавности движений робота. Для того чтобы это выполнялось, значения перечисленных параметров должны совладать на пересечениях участков.
Приняв во внимание все подобные ограничения, приходим, в конце концов к 14 ограничениям для вычисления неизвестных коэффициентов в точках пересечения трех участков траектории, т. е. траектории типа 4—3—4 и 3—5—3. Три участка начальный, промежуточный и конечный. В табл. 4.8.1 указаны 14 ограничений, относящихся к траекториям, разделенным на участки (рис. 4.8.3).
Чтобы полностью определить три полинома низкой степени при наложении приведенных выше 14 ограничений, сумма показателей степеней переменной t должна быть 14—3, потому что для этих трех различных полиномов имеются три свободных константы. Другими словами, должно быть 14 неизвестных, являющихся коэффициентами полиномов. Три из них являются свободными, так как оyи не умножаются на t. Таким образом, из-за того что полином m-й степени от t должен иметь m+1 коэффициентов, сумма степеней этих полиномов, относящихся к трем участкам, должна быть равна, по меньшей мере 11. Существует множество способов удовлетворить этому условию, в частности 4+3+4, 3+5+3 или 5+2+4. Рассмотрим подробнее некоторые из этих траекторий.
ТРАЕКТОРИЯ ТИПА 4 — 3 — 4
Для трех участков траектории перемещения, а именно: подъем, промежуточный участок и спуск, существуют полиномы четвертой, третьей и четвертой степеней, которые могут до- вольно хорошо аппроксимировать их. Для поиска решения на каждом из участков удобно ввести безразмерную переменную времени τ, такую, что
τ =
и τm = tm- tm-1где индексы m и m-1 относятся к m-му и (m—1)-му участкам траектории движения робота. Таким образом, при движении по m-му участку траектории безразмерное время τ изменяется от 0 до 1, тогда как реальное время меняется от tm-1 до tm. Введение соотношений (4.8.2) значительно упростит выкладки.