Смекни!
smekni.com

Проектирование трепанатора (стр. 3 из 8)

Сечение провода:

.

Диаметр провода:

dпр=0,48 мм.

Округляем до ближайшего большего числа и получаем: dпр=0.5 мм.

Длина провода, выраженная через радиус витка:

; lпр=19.07 м.

Сечение, выраженное через средний радиус витка:

.

Сопротивление обмотки:

,

ρ=0,01 Ом – удельное сопротивление провода обмотки (справочные данные).

R=2.1*10 –5 Ом.

Расчет коэффициентов для уравнения динамики ЛЭМД:

δ=0,015 м. – начальный рабочий зазор.

δ I=1,5 – перевод в относительную форму.

- базисное значение силы тяги; Fδ=2,5*10 2 Н.

Тяговое усилие от притяжения в рабочем зазоре:


,

Тяговое усилие от потоков рассеяния:

Fе2a=0,145 H.

Полное тяговое усилие, в исходном положении якоря:

Fla=275,145H.

- приведенное значение.

Якорь располагается эксцентрично в круглом отверстии фланца, в следствие чего возникает сила одностороннего магнитного притяжения, вызывающая трение между направляющим стержнем и фланцем; найдем ее:

– функция преобразования абсолютного значения в относительное.

Величина нерабочего зазора Δа=0,0002 м.

Δ=О(Δa); Δ=0.002 м.


Толщина фланца hna=0,005 м.

hn=O(hna); hn=0,5 мм.

Коэффициент трения якоря о втулку k=0,022.

Индукция направляющего стержня: Вс=2 Тл.

Радиус стержня: rса=2*10 –3 м.; rc=0,2 м.

Сила трения Fт:

Fт=7,34*10 –3H.

Сила сопротивления пружины в обобщенной форме:

- жесткость пружины.

- начальная глубина внедрения якоря в обмотку.

Fp=0,535 H.

Найдем демпфирующую силу:

- диаметр сердечника;

- зазор между сердечником и магнитопроводом.

Коэффициент демпфирования вычислим по формуле:

где v= 0,9 м/с. – усредненное значение скорости за время движения якоря.

Fd=0.004 H,

где Fd – демпфирующая сила, зависящая от скорости движения якоря.

Рассчитаем коэффициенты выведения в пункте 1.3:

p1=2,411*105, p2=10,592

Подставляя эти коэффициенты в систему уравнений (1.3.3) можно рассчитать любые динамические параметры ЛЭМД.

2.5 Расчёт напряжений, возникающих при ударе бойка по наковальне и жёсткости амортизирующей пружины

Исходные данные:

, модуль упругости стали 40´;

U = 1.54 м/сек, скорость бойка перед ударом;

Qб =0.11707 кг, масса бойка с сердечником;

Qp = 0.0186 кг, масса наковальни с долотом.

Определим максимальную силу удара в месте контакта бойка и наковальни, которая может возникнуть при работе прибора, если долото оперто в достаточно жёсткий материал (например чугунную плиту), используем формулы, выведенные на основе формул Герца.

– коэффициент Пуассона.

R1 – радиус сферической поверхности бойка;

R2 – радиус сферической поверхности наковальни.

Для удобства обозначим:

m1= Qб,

m2 = Qp.

Найдём m – приведённую массу системы

г

Определим промежуточный коэффициент b

Зная b, найдём x макс – наибольшее сближение тел во воемя удара, соответствующее наибольшему значению ударной силы.


Теперь определим время соударения tcjel

Вычислим напряжения, возникающие при ударе в месте контакта, используя формулы, приведённые выше, определив радиус пятна контакта:

- напряжения, возникающие во время удара.

Допускаемое напряжение на усталость материала стали

, отсюда запас

Вычислим коэффициент жёсткости пружины, установленной между корпусом и наковальней (эта пружина исключает передачу удара на корпус прибора при ненормальных режимах работы), например при холостом ударе, когда долото не опирается на кость.

Исходные данные для расчёта:

m = Qб = 0.00707 кг – масса бойка;

m = Qр = 0.0186 кг – масса наковальни с долотом.

Начальную кинетическую энергию бойка определим из выражения:


а максимальное перемещение наковальни при холостом ходе определим

Используя полученные данные, приравняем следующие выражения:

Выразив из него s, получим:

Найдя s, определим жёсткость пружины k

Максимальное усилие, возникающее в пружине в процессе удара:

2.6 Расчёт и обоснование элементов принципиальной схемы блока питания

Для обеспечения эксплуатационных характеристик рассматриваемого модернизируемого устройства – трепанатора, его необходимо питать от автономного источника питания (аккумулятора) или от сети 220 В с хорошей гальванической развязкой; для обеспечения безопасности пациента и медицинского персонала.

Из анализа возможных схем питания устройства следует, что обеспечить требуемую развязку можно только использованием трансформатора. С другой стороны, для работы инструмента требуется значительная импульсная мощность (»20 А, 50 В), что исключает применение прямого простого подключения через трансформатор, т. к. габариты и масса трансформатора на 1 кВт исключает его применение в качестве переносной аппаратуры. Поэтому необходимо сконструировать источник питания, удовлетворяющий противоречивым требованиям.

В качестве элемента, обеспечивающего согласование противоречивых требований возможно в данном случае применение конденсатора – накопителя, обеспечивающего необходимую импульсную мощность.

Таким образом, схема блока питания будет содержать три основных элемента: Трансформатор с выпрямителем, накопительный конденсатор, прерыватель – формирователь импульсов.



В соответствии с этим расчёты проводятся в нижеприведённой последовательности.

2.7 Расчёт трансформатора с выпрямителем

Определение мощности трансформатора производится исходя из мощности импульсов на выходе и скважности. Скважность q определяется соотношением:

где

– период следования импульсов;

– длительность импульсов.

В данном случае