Сечение провода:
.Диаметр провода:
dпр=0,48 мм.Округляем до ближайшего большего числа и получаем: dпр=0.5 мм.
Длина провода, выраженная через радиус витка:
; lпр=19.07 м.Сечение, выраженное через средний радиус витка:
.Сопротивление обмотки:
,ρ=0,01 Ом – удельное сопротивление провода обмотки (справочные данные).
R=2.1*10 –5 Ом.
Расчет коэффициентов для уравнения динамики ЛЭМД:
δ=0,015 м. – начальный рабочий зазор.
δ I=1,5 – перевод в относительную форму. - базисное значение силы тяги; Fδ=2,5*10 2 Н.Тяговое усилие от притяжения в рабочем зазоре:
Тяговое усилие от потоков рассеяния:
Fе2a=0,145 H.
Полное тяговое усилие, в исходном положении якоря:
Fla=275,145H. - приведенное значение.Якорь располагается эксцентрично в круглом отверстии фланца, в следствие чего возникает сила одностороннего магнитного притяжения, вызывающая трение между направляющим стержнем и фланцем; найдем ее:
– функция преобразования абсолютного значения в относительное.Величина нерабочего зазора Δа=0,0002 м.
Δ=О(Δa); Δ=0.002 м.
Толщина фланца hna=0,005 м.
hn=O(hna); hn=0,5 мм.
Коэффициент трения якоря о втулку k=0,022.
Индукция направляющего стержня: Вс=2 Тл.
Радиус стержня: rса=2*10 –3 м.; rc=0,2 м.
Сила трения Fт:
Fт=7,34*10 –3H.Сила сопротивления пружины в обобщенной форме:
- жесткость пружины. - начальная глубина внедрения якоря в обмотку. Fp=0,535 H.Найдем демпфирующую силу:
- диаметр сердечника; - зазор между сердечником и магнитопроводом.Коэффициент демпфирования вычислим по формуле:
где v= 0,9 м/с. – усредненное значение скорости за время движения якоря.
Fd=0.004 H,где Fd – демпфирующая сила, зависящая от скорости движения якоря.
Рассчитаем коэффициенты выведения в пункте 1.3:
p1=2,411*105, p2=10,592Подставляя эти коэффициенты в систему уравнений (1.3.3) можно рассчитать любые динамические параметры ЛЭМД.
2.5 Расчёт напряжений, возникающих при ударе бойка по наковальне и жёсткости амортизирующей пружины
Исходные данные:
, модуль упругости стали 40´;U = 1.54 м/сек, скорость бойка перед ударом;
Qб =0.11707 кг, масса бойка с сердечником;
Qp = 0.0186 кг, масса наковальни с долотом.
Определим максимальную силу удара в месте контакта бойка и наковальни, которая может возникнуть при работе прибора, если долото оперто в достаточно жёсткий материал (например чугунную плиту), используем формулы, выведенные на основе формул Герца.
– коэффициент Пуассона.R1 – радиус сферической поверхности бойка;
R2 – радиус сферической поверхности наковальни.
Для удобства обозначим:
m1= Qб,
m2 = Qp.
Найдём m – приведённую массу системы
гОпределим промежуточный коэффициент b
Зная b, найдём x макс – наибольшее сближение тел во воемя удара, соответствующее наибольшему значению ударной силы.
Теперь определим время соударения tcjel
Вычислим напряжения, возникающие при ударе в месте контакта, используя формулы, приведённые выше, определив радиус пятна контакта:
- напряжения, возникающие во время удара.Допускаемое напряжение на усталость материала стали
, отсюда запасВычислим коэффициент жёсткости пружины, установленной между корпусом и наковальней (эта пружина исключает передачу удара на корпус прибора при ненормальных режимах работы), например при холостом ударе, когда долото не опирается на кость.
Исходные данные для расчёта:
m = Qб = 0.00707 кг – масса бойка;
m = Qр = 0.0186 кг – масса наковальни с долотом.
Начальную кинетическую энергию бойка определим из выражения:
а максимальное перемещение наковальни при холостом ходе определим
Используя полученные данные, приравняем следующие выражения:
Выразив из него s, получим:
Найдя s, определим жёсткость пружины k
Максимальное усилие, возникающее в пружине в процессе удара:
2.6 Расчёт и обоснование элементов принципиальной схемы блока питания
Для обеспечения эксплуатационных характеристик рассматриваемого модернизируемого устройства – трепанатора, его необходимо питать от автономного источника питания (аккумулятора) или от сети 220 В с хорошей гальванической развязкой; для обеспечения безопасности пациента и медицинского персонала.
Из анализа возможных схем питания устройства следует, что обеспечить требуемую развязку можно только использованием трансформатора. С другой стороны, для работы инструмента требуется значительная импульсная мощность (»20 А, 50 В), что исключает применение прямого простого подключения через трансформатор, т. к. габариты и масса трансформатора на 1 кВт исключает его применение в качестве переносной аппаратуры. Поэтому необходимо сконструировать источник питания, удовлетворяющий противоречивым требованиям.
В качестве элемента, обеспечивающего согласование противоречивых требований возможно в данном случае применение конденсатора – накопителя, обеспечивающего необходимую импульсную мощность.
Таким образом, схема блока питания будет содержать три основных элемента: Трансформатор с выпрямителем, накопительный конденсатор, прерыватель – формирователь импульсов.
2.7 Расчёт трансформатора с выпрямителем
Определение мощности трансформатора производится исходя из мощности импульсов на выходе и скважности. Скважность q определяется соотношением:
где
– период следования импульсов; – длительность импульсов.В данном случае