Смекни!
smekni.com

Проектирование усилителя низкой частоты (стр. 2 из 2)

Меньшее значение

может привести к низкоомным сопротивлениям базовых цепей транзисторов и соответственно, снижению коэффициента усиления каскада. Поэтому первоначально целесообразно принять среднее значение
.

2.3 Расчет входной цепи каскада

Амплитудное значение входного напряжения:

Выходное сопротивление каскада:

где

– выходное сопротивление транзистора.2.3.3

Выходная мощность каскада:

Коэффициент усиления каскада по напряжению:

2.4 Расчет КПД каскада для максимального входного сигнала

Среднее значение тока, потребляемого одним транзистором:

Мощность, потребляемая коллекторной цепью двух транзисторов:

P0к = 2EnI0=2·12∙1,92 = 46,31(Вт).

Мощность, потребляемая цепью смещения:

P0см = Еn ∙ Iдел = 12 ∙ 0,34 = 4,12 (Вт).

КПД каскада:


3. Расчет фазоинверсного каскада

Рисунок 3.1 – фазоинверсный каскад.

Исходными величинами для расчета каскада являются сопротивление нагрузки

и максимальная амплитуда напряжения на нагрузке. Этими значениями для фазоинверсного каскада являются параметры входной цепи выходного каскада
и
.

3.1 Выбор транзистора

Выбор транзистора производится по соотношению

где


- мощность, отдаваемая транзистором в нагрузку, то есть входную цепь выходного каскада;

- мощность на входе выходного каскада;

- КПД трансформатора фазоинверсного каскада.

По справочнику [2] выбран транзистор КТ503Д со следуйщими параметрами:

Pкдоп25°С = 500мВт – максимально допустимая постоянная рассеиваемая мощность на коллекторе;

Uкдоп = 60В – максимально допустимое напряжение между коллектором и эмиттером;

Iкдоп = 300мА – максимально допустимый постоянный ток коллектора;

h21эmin = 40 – минимальный статический коэффициент передачи тока в схеме с общим эмиттером;

Iк025°С = 1мкА = обратный ток коллектора.

Выбираем напряжение источника питания которое равно Eп = 12В.

3.2 Расчет режима работы

Амплитудное значение переменной составляющей коллекторного напряжения:

= Eп – Uкэmin - ∆Uкэ – Uэ = 12 – 1 – 0,42 – 2,4 = 8,18(В),

где Uкэmin = (0,5÷ 1)В = 1В;

Uэ ≈ (0,1÷ 0,3) Eп = 0,2Eк = 0,2 ∙ 12 = 2,4(В);

∆Uкэ ≈ (0,15 ÷ 0,2)Uэ = 0,175 ∙ 2,4 = 0,42(В).

Напряжение коллектор – эмиттер в режиме покоя:

Эквивалентное сопротивление коллекторной нагрузки:

Амплитуда переменной составляющей тока коллектора:

.

Ток покоя коллектора:

,

где Iкmin ≈ (0,5 ÷ 1)мА = 1мА;

;

Тогда:

Максимальная мощность, рассеиваемая на коллекторе транзистора:

3.3 Расчет параметров цепи стабилизации режима и цепи смещения

Коэффициент передачи тока эмиттера:

Сопротивление эмиттерной цепи:

Принимаем Rэ = 82 Ом

Сопротивления Rб1 и Rб2 в цепи делителя:

ПринимаемRб1=3000Ом


Принимаем Rб2 = 750 Ом

где SФИК = (5÷10) – коэффициент нестабильности фазоинверсного каскада.

3.4 Расчет входной цепи каскада

Входное сопротивление транзистора в схеме с общим эмиттером:

где rб = (100÷200)Ом – сопротивление базового слоя;

где φТ = 25,6 мВ для tв = 20°C;

m = 2 для кремниевых транзисторов.

Для уменьшения влияния разброса параметров транзистора на коэффициент усиления в эмиттерную цепь вводят сопротивление Rэ1, не блокируемое конденсатором. Это сопротивление обычно принимают в пределах Rэ1=(1÷5)rэ. Это сопротивление мы учитывать не будем.

Тогда: rв = 100Ом

Амплитудное значение входного напряжения:


где

- входное сопротивление каскада;

Тогда:

Входная мощность каскада:

Амплитудное значение входного тока:

Коэффициент усиления каскада по напряжению:



4 Расчет входного каскада

Выбираем транзистор КТ3102Е со следующими параметрами:

Uкэдоп = 50 В Tkдоп = 85°С

Pkдоп = 0,25 Вт Ik0 = 10 мА

h21э = 400 Uкэнас = 0,7 В

Ток покоя эмиттера находим по графику зависимости h21э = ƒ(Iэ) из справочника [3]:

I0э = 12 мА.

Напряжение каскада берем равным Eк = 0,9 Еn = 0,9∙12 = 10,8 В из-за дополнительного падения напряжения на низкочастотном развязывающем фильтре.

Ток покоя базы:

Постоянная составляющая тока делителя:

Сопротивление эмиттерной цепи:

Входное сопротивление транзистора в схеме с общим эмиттером:

где

- сопротивление базового слоя;

где Uбэ = 0,619 В находим по входным характеристикам при I0б = 0,2 мА и

Uкэ = 5 В из справочника [3].

Тогда:

(Oм).

Напряжение в средней точке базового делителя в режиме покоя:

U0д = URэ + Uбэ = 0,3∙10,8 + 0,619 = 3,86 (В).

Сопротивления резисторов R1 и R2 делителя:

Принимаем R1 = 26 кОм; R2 = 39 кОм.

Входное сопротивление каскада с общим эмиттером:

.

Поскольку входное сопротивление каскада с общим эмиттером меньше внутреннего сопротивления источника сигнала, то входном каскаде будет использована схема с общим коллектором.

Ток покоя базы:

Постоянная составляющая тока делителя:

Входное сопротивление транзистора в схеме с общим эмиттером:

где

где Uбэ = 0,619 В находим по входным характеристикам при I0б = 0,2 мА и

Uкэ = 5 В из справочника [3].

Тогда:

Напряжение в средней точке базового делителя в режиме покоя:

U0д = URэ + Uбэ = 0,3·10,8 + 0,619 = 3,86 (В).

Сопротивления резисторов R1 и R2 делителя:

Принимаем R1 = 26 кОм; R2 = 39 кОм.

Входное сопротивление каскада с общим коллектором:

Так как входное сопротивление каскада с общим коллектором больше сопротивления генератора, то схема с общим коллектором является подходящей для ее использования во входном каскаде усиления.

Расчет коэффициента усиления по напряжению для входного каскада производится по формуле:


Список литературы

1. Методические указания к выполнению курсового проекта по курсу “Аналоговая схемотехника ” по теме “Проектирование усилителя низкой частоты”.

2. Забродин Ю. С. Промышленная электроника 1982г.

3. Полупроводниковые приборы : транзисторы. Справочник: под редакцией Н. Н. Горюнова. – М. Енергоатомиздат. 1983- 904с.

4. Хоровиц П., Хилл У. Искусство схемотехники, М. Мир, 1983

5. Резисторы: Справочник. Под общей редакцией И. И. Четверткова.

6. Малахов В. П. Схемотехника аналоговых устройств О., Астро-Принт 2000г.