В = Вв + В1, (3.5)
где В1 – расстояние от ванны до внутренней стенки корпуса (для удобства обслуживания ванны принимаем В1 ≥ 1 м).
В = 2,3 + 1 = 3,3 м.
Ширина установки в зоне промывок водой
Впр = Ви + 2*b1, (3.6)
где b1 – расстояние от изделия до внутренней стенки корпуса с учетом расположения охватывающего контура (принимаем b1 = 0,4 м ).
Впр = 1,68 + 2*0,4 = 2,48 м.
Принимаем Впр = 2,5 м.
Полная ширина установки (с учетом зон обслуживания) Ву = 4,5 м.
Высота ванны осаждения
Нв = Ни + 2*h, (3.7)
где Ни – высота изделия, м;
h – расстояние от низа изделия до зеркала ванны (принимаем h = 0,3 м).
Нв = 1,42 + 2*0,3 = 2,02 м.
Принимаем Нв = 2 м. Полная высота ванны осаждения с учетом установки ее на отметке 0,5 м от пола :
Нвп = Нв + 0,5; (3.8)
Нвп = 2 + 0,5 = 2,5 м.
Высотная отметка монорельса при нижнем положении изделия
Нм.н. = hн + Hи + hп, (3.9)
где hн – расстояние от уровня пола до изделия (принимаем hн = 0,8 м);
hп – расстояние от верха изделия до монорельса (принимаем hп = 1 м).
Нм.н. = 0,8 + 1,42 + 1 = 3,22 м.
Высотная отметка монорельса при верхнем положении изделия и зазоре, равном 0,2 м
Нм.в. = Нвп + Ни + hп + 0,2; (3.10)
Нм.в. = 2,5 + 1,42 + 1 + 0,2 = 5,12 м.
Разность высот монорельса
Н1 = Нм.в. – Нм.н; (3.11)
Н1 = 5,12 – 3,22 = 1,9 м.
Объем ванны осаждения
Vв = Lв*Вв*Нв*0,8; (3.12)
Vв = 16*2,3*2*0,8 = 58,9 м3.
Принимаем Vв = 60 м3. Ширина транспортного проема
Вт.п. = Ви + 2*Вз, (3.13)
где Вз – расстояние между изделием и проемом (принимаем Вз = 0,15 м).
Вт.п. = 1,68 + 2*0,15 = 1,98 м.
Высота транспортного проема
Нт.п. = Ни + 2*h1, (3.14)
где h1 – расстояние по высоте от входного проема до изделия, h1 = 0,1 – 0,15 м.
Нт.п. = 1,42 + 2*0,15 = 1,72 м.
Высота установки электроосаждения Ну = 6 м.
б) Расчет вентиляционных систем.
Объем приточного воздуха за 1 ч, м3 ,
Vпр = n*Vз.ос., (3.15)
где n – кратность обмена воздуха в установке за 1 ч (принимаем n = 50);
Vз.ос. – объем зоны осаждения (над ванной), м3.
Vз.ос. = Lв*(Вв + В1)*(Нм.в. – Нвп); (3.16)
Vз.ос. = 16*(2,3 + 1)*(5,12 – 2,5) = 137,3 м3.
Vпр = 50*137,3 = 6865 м3/ч.
Принимаем вентилятор с напором Р = 700 Па
Выбираем вентилятор Ц 4–70 № 5 со следующей характеристикой [6, с.151]:
Q = 7000м3/ч; Р = 700 Па; η = 0,75; ω = 150 с-1.
Требуемая мощность электродвигателя
N = Q*P*Kз/3600*1000*η*ηп*ηр, (3.17)
где Q – производительность вентилятора, м3/ч;
Р – давление вентилятора, Па;
Кз – коэффициент запаса;
η, ηп, ηр – соответственно КПД вентилятора, привода и зубчатой передачи.
N = 7000*700*1,1/3600*1000*0,75*0,96*0,95 = 2,18 кВт.
Выбираем электродвигатель типа АО2–22–4 со следующей характеристикой [6, с.173]:
N = 2,2 кВт; n = 1500 мин-1.
в) Расчет системы перемешивания.
Внешняя система перемешивания.
Подачу насоса для циркуляции Vнц выбирают в расчете на двух- трехкратный обмен лакокрасочного материала в ванне за 1 ч:
Vнц = 2*Vв;(3.18)
Vнц = 2*60 = 120 м3/ч.
Подбираем циркуляционный насос ОХ6–70ГС–2 со следующей характеристикой [9, с.14]:
Q = 132,2 м3/ч;
η = 0,75.
Насос комплектуем электродвигателем АО12–55–8 со следующей характеристикой [9, c.14]:
Nн = 250 кВт; n = 750 мин-1.
Диаметр нагнетательной трубы от насоса в ванну
dн = (Vнц/(3600*υл*0,785))0,5, (3.19)
где υл – скорость движения лакокрасочного материала по трубе (принимаем υл = 2 м/с ).
dн = (120/(3600*2*0,785))0,5 = 0,15 м.
Внутренняя система перемешивания. Расчетная производительность V мешалок для лакокрасочного материала зависит от его вида и кратности обмена – минимальный (10) или максимальный (60) за 1 ч. При числе мешалок n = 2
Vmin = 10*Vв/n; (3.20)
Vmax = 60*Vв/n; (3.21)
Vmin = 10*60/2 = 300 м3/ч.
Vmax = 60*60/2 = 1800 м3/ч.
Диаметр трубы для слива лакокрасочного материала, м,
dсл = (8*f*(Hж)0,5/(τ*α*π*(2g)0,5))0,5, (3.22)
где f – площадь поперечного сечения трапецеидальной ванны, м2;
Нж – уровень жидкости в ванне, м;
τ – продолжительность слива, с;
α – коэффициент расхода (принимаем α = 0,62);
g – ускорение свободного падения.
dсл = (8*22*(2,1)0,5/(1800*0,62*3,14*(2*9,81)0,5))0,5 = 0,128 м.
г) Тепловой расчет зоны электроосаждения.
Количество теплоты, выделяющейся в процессе электроосаждения
Q = q*Gf, (3.23)
где q – количество теплоты выделяющейся в процессе электроосаждения с 1 м2 поверхности изделия, q = 0,4…0,8 МДж/ч;
Gf – производительность по окрашиваемой поверхности, м2/ч.
Q = 0,67*4800 = 3216 МДж/ч.
Потери теплоты в зоне осаждения складывается из потерь на нагревание изделия Q1 и на испарение влаги Q2
Потери теплоты на нагревание изделия
Q1 = Gm*cи*∆t, (3.24)
где Gm – производительность по массе изделий, кг/ч;
си – удельная теплоемкость изделия (для стали си = 0,48кДж/(кг*°С));
∆t – температура нагрева изделий (принимаем ∆t = 5°С).
Q1 = 18000*0,48*5 = 43,2 МДж/ч.
Потери тепла на испарение влаги
Q2 = gв*F1*r, (3.25)
где gв – масса влаги, испаряющейся за 1 ч с 1 м2 зеркала ванны (принимаем gв = 0,18…0,22 кг/м2*ч);
F1 – площадь зеркала ванны (F1 = 16*2,3 = 36,8 м2);
r – теплота парообразования воды, r = 2258 кДж/кг.
Q2 = 0,2*36,8*2258 = 16,6 МДж/ч.
Сумма потерь теплоты при эксплуатации
∑Qn = (Q1 + Q2)*кз, (3.26)
где кз – коэффициент запаса, кз = 1,1 – 1,3.
∑Qn = (43,2 + 16,6)*1,2 = 71,8 МДж/ч.
Количество теплоты, выделяющейся в процессе электроосаждения без учета потерь теплоты при эксплуатации
Q3 = Q – ∑Q; (3.27)
Q3 = 3216 – 71,8 = 3144,2 МДж/ч.
Расход воды на охлаждение лакокрасочного материала
Gв = Q3/(c*∆t́), (3.28)
где ∆t́ – разность температур воды на входе и выходе из теплообменника (принимаем ∆t́ = 20 – 10 °С);
св – удельная теплоемкость воды, св = 4,19 кДж/(кг*°С).
Gв = 3144,2*10-3/(4,19*10) = 75040 кг/ч.
Расчетная поверхность теплообмена
F́ = Q3/(к*∆t́), (3.29)
где к – коэффициент теплопередачи (принимаем к = 1,17 МВт/(м2*°С)).
F́ = 3144,2/(1,17*10) = 268,7 м2.
д) Расчет системы промывки.
Зона первой промывки. Для удаления с изделия избытка лакокрасочного материала и пены в зоне электроосаждения устанавливаем один контур промывки с форсунками типа ФК – 01. Для промывки используем деминерализованную воду, поступающую непосредственно из сети. Вода стекает в ванну электроосаждения. На контуре 14 форсунок (10 запасных). Производительность форсунки 0,54 м3/ч при давлении 0,1МПа
Расход воды через форсунки контура
Qв = n*qф, (3.30)
где n – количество форсунок,
qф – производительность форсунки, м3/ч.
Qв = 4*0,54 = 2,16 м3/ч.
Зона второй промывки. Для подачи ультрафильтрата устанавливаем десять контуров, в каждом по 16 насадков типа НП – 01 производительностью 0,42 м3/ч при давлении 0,07 МПа. Общий расход ультрафильтрата рассчитываем по формуле (3.30)
Qуф = 0,42*10*16 = 67,2 м3/ч.
Зона третьей промывки.
Для подачи воды устанавливаем десять контуров, в каждом по 16 насадков типа НП – 01 производительностью 0,42 м3/ч при давлении 0,07 МПа.
Общий расход воды рассчитываем по формуле (3.30)
Qв = 0,42*10*16 = 67,2 м3/ч.
Определим расход свежей воды из расчета 8 л на 1 м2 окрашиваемой поверхности (с учетом заданной производительности GF = 4800 м2/ч):
Qсв.в. = 4800*0,008 = 38,4 м3/ч.
3.2 Расчет конвективной сушильной установки для сушки первого слоя грунта [7]
а) Определение размеров сушильной камеры.
Ширина транспортного проема
b1 = b + 2*b2, (3.31)
где b – ширина изделия, b = 1,62 м;
b2 – зазор по ширине между изделием и проемом, b2 = 0,15 м [1].
b1 = 1,68 + 2*0,15 = 1,98 м ≈ 2 м.
Высота транспортного проема
h1 = h + 2*h2, (3.32)
где h – ширина изделия, h = 1,42 м;
h2 – зазор по высоте между изделием и проемом, h2 = 0,1 м [1].
h1 = 1,42 + 2*0,1 = 1,62 м ≈ 1,7 м.
Ширина камеры (с учетом размещения воздуховодов)
В = b + bвоз, (3.33)
где bвоз – зазор по ширине между изделием и стенкой установки равный 0,7 м в соответствии с ГОСТ 23093–78.
В = 1,68 + 2*0,7 = 3,08 м ≈ 3,1 м.
Длина камеры
L = τ*υ + 2*LT, (3.34)
где τ – время сушки, τ = 30 мин;
υ – скорость конвейера, υ = 1,2 м/мин;
LТ – длина тамбура, LТ = 1,5м.
L = 1,2*30 +2*1,5 = 39 м.
Высота камеры
Н = h + 0,8 + 1,32; (3.35)
Н = 1,42 + 0,8 + 1,32 = 3,54 м ≈ 3,6м.
Размеры проема в месте прохождения конвейера с учетом размеров каретки
bз = 0,3 м; hз = 0,4 м.
Площадь транспортного проема
Fпр = b1*h1 + (b1 + bз)/2*(1,32 – h2 – hз) + bз*bз; (3.36)
Fпр = 2*1,7 + (2 + 0,3)/2*(1,32 – 0,1 – 0,4) + 0,3*0,4 = 4,7 м2.
Поверхность стен сушильной камеры
F1 = 2*(L + B)*H – 2*Fпр; (3.37)
F1 = 2*(39 +3,1)*3,6 – 2*4,7 = 294 м2.
Поверхность потолка и пола сушильной камеры
F2 = 2*L*B; (3.38)
F2 = 2*39*3,1 = 242 м2.
Поверхность наружных воздуховодов
F3 = 2*L; (3.39)
F3 = 2*39 = 78 м2.
б) Расход теплоты в сушильной камере.
Тепловые потери через внешние ограждения камеры
W1 = (F1*k1 + F2*k2 + F3*k3)*(tc – tн), (3.40)
где tс – температура сушки, tс = 180 °С;
tн – температура воздуха в цехе, tн = 15°С.
В качестве теплоизоляции выбираем минеральную вату (слой толщиной 0,08 м). Тогда коэффициенты теплопередачи [1, с. 217], кДж/(м2*ч*°С)