2FeS + ЗО2 + SiO2 = 2FeO • SiO2 + 2SO2. (6)
При плавке на штейн в нейтральной или восстановительной атмосфере регулировать степень десульфуризации невозможно и содержание меди в штейнах будет незначительно отличаться от ее содержания в исходной шихте. По этой причине для получения более богатых по содержанию меди штейнов при переработке бедных концентратов иногда целесообразно предварительно удалить часть серы путем окислительного обжига, осуществляемого без расплавления материала при 800-900 °С.
Дальнейшую переработку штейнов с целью получения из них металлургической меди осуществляют путем их окисления в жидком состоянии.
При этом вследствие большего сродства железа к кислороду сначала окисляется сульфид железа по реакции (6). После окисления всего железа и удаления получившегося шлака окисляют сульфид меди по суммарной реакции:
Cu2S + O2 = 2Cu + S02. (7)
Технология, включающая плавку на штейн, позволяет получать более чистый металл, содержащий 97,5-99,5% Сu. Такую медь называют черновой. Рафинирование черновой меди по сравнению с черной значительно упрощается и удешевляется.
В последние годы в металлургии сульфидного сырья все большее развитие получают автогенные процессы, осуществляемые за счет тепла от окисления сульфидов при использовании подогретого дутья и дутья, обогащенного кислородом. В этих процессах, являющихся окислительными плавками, в одной операции совмещаются процессы обжига и плавки на штейн.
Современная пирометаллургия меди, несмотря на принципиальную общность используемых различными предприятиями технологических схем, предусматривает несколько вариантов (1-IV) ее практического осуществления (рис).
Как следует из рис., технология получения черновой меди характеризуется многостадийностью (за исключением варианта IV, предусматривающего непосредственную плавку концентратов на черновую медь).
В каждой из последовательно проводимых технологических операций постепенно повышают концентрацию меди в основном металлсодержащем продукте за счет отделения пустой породы и сопутствующих элементов, главным образом железа и серы. На практике удаление железа и серы осуществляют за счет их окисления в три (обжиг, плавка, конвертирование), в две (плавка, конвертирование) или в одну стадию.
Наиболее распространенная до настоящего времени технология предусматривает (см. рис) обязательное использование следующих металлургических процессов: плавка на штейн, конвертирование медного штейна, огневое и электролитическое рафинирование меди. В ряде случаев перед плавкой на штейн проводят предварительный окислительный обжиг сульфидного сырья.
Плавку на штейн медных руд и концентратов - основной технологический процесс - можно проводить практически любым видом рудных плавок. В современной металлургии меди для ее осуществления используют отражательные, руднотермические (электрические) и шахтные печи, а также автогенные процессы нескольких разновидностей.
Что же касается месторождений меди на Украине, то их можно назвать очень бедными, по сколько залежей меди на территории нашей страны практически нету. Вот только незначительная часть месторождений медных руд расположена на Волыне и Подолье. Причём слой проникновения этих залежей колеблется в приделах 0,2 - 0,5 м. Поэтому сырьевая база меди мала.
В данном примере для изготовления стойки используется чугун марки СЧ 21 (серый чугун с пределом прочности σ
= 210 МПа), класс точности получаемой отливки 9т, номер ряда припуска 8, производство - серийное.Обрабатываемые поверхности по возможности размещают вертикально или в нижней части отливки. Для моей детали предпочтительно вертикальное положение отливки с размещением в нижней части формы.
Припуски на механическую обработку - слои металла, удаляемые в процессе механической обработки отливки с её обрабатываемых поверхностей для обеспечения заданной геометрической точности и качества поверхности. Значения припусков на механическую обработку назначают в зависимости от класса точности номинальных размеров отливки и номера ряда припусков в соответствии с ГОСТ 26645-85. По номинальным размерам обрабатываемых элементов и классу точности отливки назначаю допуски.
Допуски размеров отливки, образованные одной полуформой, устанавливают на 1-2 класса точнее заданного. Поэтому в расчётах я использую класс точности 8
По назначенному допуску и номеру ряда припуска устанавливаю значение припуска.
Отверстия небольшого диаметра усложняют технологический процесс получения отливки. На такие элементы припуски не назначают, а полностью получают механической обработкой. На чертеже на эти элементы назначают напуски. По полученным значениям припусков и номинальных размеров детали определяют размеры отливки по формуле:
L
=L ±Zгде L
- номинальный размер отливки, мм;L
- номинальный размер детали, мм;Z- припуск на механическую обработку, мм.
Припуск на механическую обработку и размеры отливок.
Номинальный размер летали L , мм | Класс точности | Номер ряда припуска | Припуск на сторону | Размер отливкиL , мм | ||
Ш 250 | 8 | 1,8 | 8 | 3,1 | Ш 256,2 | |
Ш 100 | 8 | 1,4 | 8 | 2,8 | Ш 94,4 | |
170 | 8 | 1,8 | 8 | 3,1 | 176,2 | |
140 | 8 | 1,6 | 8 | 3,03,1 | --143,1 | |
Ш 190 | 8 | Необрабатывемая поверхность | Ш190 | |||
105 | Напуск | |||||
2 скифа 2x45є | Напуск | |||||
Внешний паз 20 под углом 60є | Напуск | |||||
Шпоночный паз 5x8 | Напуск |
Формовочные уклоны облегчают извлечение модели из формы. Уклоны придаются вертикальным поверхностям моделей, не имеющим конструктивных уклонов в направлении извлечения их из формы. Значения уклонов регламентированы стандартами и зависят от материала модели и высоты формообразующей поверхности.
Формовочные уклоны.
Высота формообразующей поверхности, мм | Формовочный уклон, мм | |
170-140=30 | 1є09' | 0,6 |
140 | 0є19' | 1,0 |
Длина стержневого знака определяется исходя из диаметра и длины стержня.
Так как имеем вертикальное расположение, то сначала определяем нижнего знака, а высота верхнего знака равна половине нижнего. Уклоны знаковых частей для вертикального стержня принимают равными для нижнего стержня 10
, верхнего 15 .Модель имеет конфигурацию внешней поверхности отливки. Внутренняя поверхность отливки образуется с помощью стержня, который изготавливают из стержневой смеси.
Величина линейной усадки для стальных отливок в среднем составляет 2%. Расчёт размеров модели и стержня производят по формуле:
L
= L + Y,где L
- номинальный размер модели или стержня, мм;Y- величина усадки, мм.
Размер модели.
Размер отливки L , мм | Усадка, % | Усадка Y, мм | Размер модели L , мм |
Ш 265,2 | 1,0 | 2,6 | Ш 258,8±1,2 |
Ш 190 | 1,0 | 1,9 | Ш 191,9±1,2 |
176,2 | 1,0 | 1,8 | 178,0±1,2 |
143,1 | 1,0 | 1,4 | 144,5±1,2 |
При изготовлении моделей и стержневых ящиков имеют место отклонения размеров, которые регламентированы стандартами.
Размеры стержня и стержневого ящика.
Размер отливки L , мм | Усадка,% | УсадкаY, мм | Размер стержня L , мм | Размер знака,мм | Размер ящика L , мм |
Ш 94,4 | 1,0 | 0,9 | Ш 95,3 | Ш 95,3±1,0 | |
176,2 | 1,0 | 1,8 | 178,0 | Высота:"верх"- 17,5"низ"- 35,0 | 230,5±1,217,5±0,735,0±0,7 |
Модели и стержни изготавливают со стержневыми знаками. Знаки на модели образуют в литейной форме полости, в которые помещают знаковые части стержня. Для получения технологических зазоров между литейной формой и знаковыми частями стержня соответствующие размеры знаковых частей модели увеличивают на величину зазора (0,2мм).