Ф9 – теплота, отводимая охлаждающей водой, кВт;
Фпот – теплопотери в окружающую среду, кВт.
Определяем тепловые потоки сырья и продуктов. Значения теплоемкостей находим по /7/ (Приложения, табл. 2-4).
Тепловой поток газообразного сырья (потоки 1-3):
Ф1 =(0,0179×33,93 + 0,0007×35,71 + 0,0013×43,56)×25 = 17,22 кВт.
Тепловой поток жидких хлоруглеводородов (поток 4):
Ф2 = (0,0536/100)×(1,289×7,0 + 0,962×4,2 + 0,858×6,0 + 0,950×5,5 + 0,862×77,3)×20 = = 0,97 кВт.
Тепловой поток жидких рециркулирующих перхлоруглеводородов (поток 5):
Ф3 = (0,502/100)×(0,858×70,8 + 0,862×29,2)×20 = 8,63 кВт.
Тепловой поток продуктов отпарки сырца перхлоруглеводородов (поток 6):
Ф4 = (0,0007/100)×(0,545×154×6,75 + 34,13×55,75 + 29,11×37,5)×30 = 0,75 кВт.
где 0,545 – удельная теплоемкость паров тетрахлорметана, кДж/(кг×К);
154 – молярная масса тетрахлорметана, г/моль.
Для упрощения расчета все компоненты, присутствующие в потоке 7, объединены в поток «дихлорэтан». Тепловой поток жидкого 1,2-дихлорэтана (поток 7):
Ф5 = 0,2069×1,289×20 = 5,334 кВт.
Рассчитываем теплоты реакций (в кДж/моль):
Теплота экзотермических реакций (теплота реакции образования гексахлорбутадиена принята равной теплоте реакции образования гексахлорбензола):
Ф6 = [1000/(2×3600)]×[285,62×0,12 + 91,48×0,18 + 694,98×7,19 + 394,81×3,11 + + 1996,3×(0,14 + 0,09) + 730,2×0,079 + 484,25×0,2375 + 436,6×9,19] = = [1000/(2×3600)]×10919,69 = 1516,52 кВт.
Общий приход теплоты:
Фприх = 17,22 + 0,97 + 8,63 + 0,75 + 5,334 + 1516,52 = 1549,424 кВт.
Количество веществ испаряющихся в хлораторе (кг/ч): тетрахлорметан - 298,54 + 1055,18 + 74,48 = 1428,2; тетрахлорэтилен – 23,17 + 1971,24 = 1994,41; гексахлорэтан – 346,91; гексахлорбуталдиен – 169,84; гексахлорбензол – 66,85; трихлорэтилен – 16,23; трихлорметан – 21,24; 1,2-дихлорэтан – 27,03 + 1397,23 = 1424,26.
Определяем теплоту, расходуемую на испарение жидких компонентов. Значения теплот испарения компонентов по /7/ (Приложения, табл. 9) теплоты испарения гексахлорбутадиена и гексахлорбензола приняты равными теплоте испарения гексахлорэтана:
Ф7 = [1/(2×3600)]×[1428,2×194,7 + 1994,41×209,2 + (346,91 + 169,84 + 66,85)×215,5 + + 16,23×239,3 + 21,24×248,3 + 1424×323,4] = 1164980,4/(2×3600) = 161,8 кВт
Тепловой поток продуктов реакций (поток 9; с целью упрощения расчета в поток «тетрахлорэтилен» включены гексахлорбензол, гексахлорбутадиен, гексахлорэтан, а в поток «хлор» - азот, диоксид углерода и хлороводород):
Ф8 = [1/(2×3600)]×[(4752,58 + 105,45 + 193,14 + 364,74)×0,693 + 4236,54×0,656 + + (1369,59 + 3,57 + 2,53)×(37,21/71) + 4244,84/(30,63/36,5)]×585 = [10815,55/(2×3600)]××585 = 878,76 кВт.
Принимаем, что теплопотери в окружающую среду составляют 5% от общего прихода теплоты:
Фпот = 0,05×1549,424 = 77,47кВт.
Количество теплоты, отводимое охлаждающей водой, находят из уравнения теплового баланса хлоратора:
Ф9 = Фприх – Ф7 – Ф8 – Фпот = 1549,424 – 161,8 – 878,76 – 77,47 = 431,394 кВт
или 431394 Вт.
Рассчитывают расход воды на охлаждение наружной стенки хлоратора. Принимают начальную температуру воды tH = 20°С и считают, что в процессе теплообмена температура повысилась на 20°С, тогда расход воды составит:
mB = Ф9/(сВ×Δt×η) = 431394/(4187×20×0,9) = 5,7239 кг/с.
ЗАКЛЮЧЕНИЕ
1. Изучены способы и технологии получения тетрахлорметана и тетрахлорэтилена, области их применении, используемая реакционная аппаратура и рассмотрены материалы, которые целесообразно использовать в процессах хлорирования.
2. Рассмотрен химизм получения тетрахлорметана и тетрахлорэтилена.
3. Разработана и описана технологическая схема процесса совместного получения тетрахлорметана и тетрахлорэтилена.
4. Выполнены материальные расчеты стадии получения тетрахлорметана и тетрахлорэтилена и Теловой расчет хлоратора.
Расходные коэффициенты на годовую производительность по перхлоруглеводородам составляют:
по хлору: 9131,31/5517,24 = 1,655 т/т;
по техническому этилену: 832,261×1000/5517,24 = 150,85 кг/т;
по природному газу: 79,42×1000/5517,24 = 14,39 кг/т.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. – М.: Химия, 1981.
2. Адельсон С.В., Вишнякова Т.П., Паушкин Я.М. Технология нефтехимического синтеза. – М.: Химия, 1985.
3. Справочник нефтехимия / Под ред. С.К. Огородникова. В 2-х т. – Л.: Химия, 1978.
4. Капкин В.Д., Савинецкая Г.А., Чапурин В.И. Технология органического синтеза. – М.: Химия, 1988.
5. Трегер Ю.А., Гужновская Т.Д. Интенсификация хлорорганических производств. Высокоэффективные каталитические системы. – М.: Химия, 1989.
6. Муганлинский Ф.Ф., Трегер Ю.А., Люшин М.М. Химия и технология галогенорганических соединений. – М.: Химия, 1993.
7. Гутник С.П., Сосонко В.Е., Гутман В.Д. Расчеты по технологии органического синтеза. – М.: Химия, 1988.
8. СТП 001-2002 Стандарты предприятия. Проекты (работы) дипломные. Требования и порядок подготовки, представления к защите и защиты. – Мн.: БГТУ, 2002.