Смекни!
smekni.com

Процесс водоподготовки (стр. 3 из 3)

Регенерация производится 5 – 10%-ным раствором поваренной соли, пропускаемым через катионитовый материал.

Характеристикой особенностью Na – катионирования является отсутствие солей, выпадающих в осадок. Анионы солей жесткости целиком направляется в котел. Это обстоятельство вызывает необходимость повышения количества продувочной воды. Умягчение воды при Na – катионировании получается достаточно глубокое, жесткость питательной воды может, доводится до 0° (практически 0,05–01°), щелочность же не отличается от карбонатной жесткости исходной воды.

К недостаткам Na – катионирования следует отнести получение повышенной щелочности в тех случаях, когда имеется значительное количество солей временной жесткости в исходной воде.

Ограничеватся одним Na – катионированием возможно при карбонатной жесткости воды, не превышающей 3–6°. В противном случае приходится значительно увеличивать количество продувочной воды, что будет создавать уже большие тепловые потери. Обычно количество продувочной воды не превышает 5–10% от общего ее расхода, идущего на питание котла.

Метод катионирования требует весьма простого обслуживание и доступен обычному персоналу котельной без дополнительного привлечения химика.

Конструкция катионитового фильтра


Н – Na– катионирование. Если катионитовый фильтр, наполненный сульфоуглем, регенерировать не раствором поваренной соли, а раствором серной кислоты, то обмен будет происходить между катионами Ca и Mg, находящимися в очищаемой воде, и катионами Н сульфоугля.

Вода, подготовленная таким образом, также имея ничтожно малую жесткость, одновременно получает кислую и таким образом, непригодна для питания паровых котлов, причем кислотность воды равна некарбонатной жесткости воды.

Комбинируя совместно Na и Н – катионитовое водоумягчение, можно получить хорошие результаты. Жесткость воды, приготовленной Н-Na – катионитовым способом, не превышает 0,1° при щелочности 4–5°.

7. Опишите принципиальные схемы водоподготовки

Осуществление необходимых изменений в составе обрабатываемой воды возможно по различным технологическим схемам, то выбор одной из них делают на основе сравнительных техника – экономических расчетов по намеченным вариантам схем.

В результате химической обработки природных вод, осуществляемой на водоподготовительных установках, могут происходить следующие основные изменения их состава: 1) осветление воды; 2) умягчение воды; 3) снижение щелочности воды; 4) уменьшение солесодержания воды; 5) полное обессоливание воды; 6) дегазация воды. Схемы обработки воды, необходимые для осуществления

перечисленных изменений ее состава, могут включать различные процессы, которые сводятся к следующим трем основным группам: 1) методы осаждения; 2) механическое фильтрование воды; 3) ионообменное фильтрование воды.

Применение технологических схем водоподготовительных установок предусматривают обычно комбинирование различных методов обработки воды.

На рисунки представлены возможные схемы комбинированных водоподготовительных установок путем применения указанных трех категорий процессов обработки воды. В этих схемах даны только основные аппараты. Без вспомогательного оборудования, а также не указаны фильтры второй и третий ступени.

Схема водоподготовительных установок

1-сырая вода; 2-осветитель; 3-механический фильтр; 4-промежуточный бак; 5-насос; 6-дозатор коагулянта; 7-Nа – катионитный фильтр; 8- Н – катионитный фильтр; 9 – декарбонизатор; 10 – ОН – анионитный фильтр; 11 – обработанная вода.

Ионообменное фильтрование является обязательной конечной стадией обработки воды при всех возможных вариантах схем и осуществляется в виде Na – катионирования, Н-Na-катионирования и Н-ОН – ионирования воды. Осветлитель 2 предусматривает два основных варианта его использования: 1) осветление воды, когда в нем осуществляются процессы коагуляции и отстаивания воды и 2) умягчение воды, когда помимо коагуляции, в нем проводится известкование, а также одновременно с известкованием магнезиальное обескремнивание воды.

В зависимости от характеристики природных вод по содержанию в них взвешенных веществ возможны три группы технологических схем их обработки:

1) Подземные артезианские воды (на рис. обозначены 1а), в которых практически обычно отсутствуют взвешенные вещества, не требуют их осветления и поэтому обработка таких вод может ограничеватся только ионообменным фильтрованием по одной из трех схем в зависимости от предъявляемых требований к обработанной воде: а) Na – катионирование, если требуется только умягчение воды; б) Н-Na – катионирование, если требуется, помимо умягчения, снижение щелочности или уменьшение солесодержание воды; в) Н-ОН – ионирование, если требуется глубокое обессоливание воды.

2) поверхностные воды с незначительным содержанием взвешенных веществ, (на рис. они обозначены 1б), могут обрабатываться по так называемым прямоточным напорным схемам, в которых коагуляция и осветление в механических фильтрах комбинируют с одной из схем ионообменного фильтрования.

3) поверхностные воды с относительно большим количеством взвешенных веществ (на рис. обозначены 1в), освобождаются от них в осветление, после чего подвергаются механическому фильтрованию и далее комбинируются с одной из схем ионообменного фильтрования. При этом часто. В целях разгрузки ионообменной части водоподготовительной установки, одновременно с коагуляцией осуществляют в осветлителе частичное умягчение воды и снижение ее солесодержание путем известкования и магнезиального обескремнивания. Такие комбинированные схемы особенно целесообразны при обработки сильно минерализованных вод, поскольку даже при частичном их обессоливании методом ионного обмена требуются большие

Задача

Рассчитать площадь осветлительных фильтров и их количество, а также потребное количество воды фильтровальной установки производительностью Q, м3/ч, с учетом расхода воды на собственные нужды.

Вариант Наименованиереки Производи-тельность Q,м3 Высота загрузкиhо, м Концентрациявзвешенных веществСв, мг/л Скоростьфильтрованияυ, м/ч
02 Белая 15 1,2 7 4,1

Решение:

Определяем межпромывочных период фильтра, ч

где: h0 – высота фильтрующего слоя, 1,2 м

Гр – грязеемкость фильтрующего материала, 3,5 кг/м3.

Значение Гр может изменятся в широких пределах в зависимости от характера взвешенных веществ, их фракционного состава, фильтрующего материала и др. При расчетах можно принимать Гр= 3? 4 кг/м3, в среднем 3,5 кг/м3,

Up – скорость фильтрования, 4,1 м/ч,

Св – концентрация, взвешенных веществ, 7 мг/л,

Количество промывок фильтров в сутки определяем по формуле:


где: Т0 – межпромывочный период, 146,34 ч,

t0 –время простоя фильтра на промывке, обычно 0,3 – 0,5 ч,

Определим необходимую площадь фильтрования:

где: U-скорость фильтрования, 4,1 м/ч,

Q – Производительность, 15 м3/ч,

В соответствии с правилами и нормами проектирования водоподготовительных установок количество фильтров должно быть не менее трех, тогда площадь одного фильтра составит:

где: m – количество фильтров.

Расчетныйпоказатель Диаметр стандартного фильтра, мм
450 700 1000 1500 2000 2600 3000 3400
Площадьфильтрования 0,17 0,39 0,76 1,72 3,10 5,20 6,95 9,10

По найденной площади одного фильтра находим требуемый диаметр фильтра по таблице: диаметр d = 1500 мм, площади фильтрования f = 1,72 м2.

Уточним количество фильтров:

Если количество фильтров меньше межпромывочного периода m0 ≤ T0+t0 (в нашем примере 2 < 167,25 + 0,5), то в резерв принимается один фильтр для вывода на ремонт. Всего фильтров будет установлено mф = 2+1=3 фильтра.

В расчет фильтра входит определение расхода воды на собственные нужды, т.е. на промывку фильтра и на отмывку фильтра после промывки.

Расход воды на промывку фильтра и взрыхление определяется по формуле:

где: i- интенсивность взрыхления, л/(с*м2); обычно i = 12 л/(с*м2);

t – время промывки, мин. t = 15 мин.

Определяем средний расход воды на промывку работающих фильтров по формуле:


Определим расход на спуск в дренаж первого фильтра со скоростью 4 м/ч в течение 10 минут перед включением в работу:

Средний расход воды на отмывку работающих фильтров:

Потребное количество воды для фильтровальной установки с учетом расхода на собственные нужды:

Qп = gср + gср.отм + Q

Qп = 0,9 + 0,018 + 15 = 15,9 м3

Литература

1. «Водоподготовка». В.Ф. Вихрев и М.С. Шкроб. Москва 1973 год.

2. «Справочник по водоподготовке котельных установок». О.В. Лифшиц. Москва 1976

год.

3. «Водоподготовка». Б.Н. Фрог, А.П. Левченко. Москва 1996 год.

4. «Водоподготовка». С.М. Гурвич. Москва 1961 год.