Аппарат работает следующим образом. В цилиндрический корпус 1 заливают воду на 1/3 его объема, затем насыпают очищенное зерно в загрузочные шахты 4. В корпус 1 доливают воду до уровня окна 20 для удаления сплава. Включают центробежный насос 8, который забирает воду через огороженный сетчатым фильтром 5 клапан 6 по трубопроводу 7. Далее вода под напором по трубопроводу 16 нагнетается в эжектор-смеситель 11, с помощью которого воду можно насыщать обычным воздухом либо озоновоздушной смесью. Выбор режима работы эжектора-смесител 11 зависит от проводимой технологической операции. Насыщенна с помощью эжектора-смесител 11 газом вода подается по трубопроводу 12 в форсунку 13, из которой вода струей (активна среда) направляется в диффузор 14. При этом активной средой эжектируется пассивна водно-зернова смесь и происходит их перемешивание. По трубе 15 гидролифта насыщенна газом водно-зернова смесь под напором активной среды подается на поверхность воды. При режиме озонирования в целях безопасности необходимо включать систему вентиляции 18, которая откачивает остатки озона из надводного пространства аппарата. После прохождения процесса замачивания , когда зерно достигнет необходимого процента влажности, открывают запорный клапан механизма для разгрузки зерна 19 и водно-зерновую массу перекачивают солодо-растительные ящики для проращивания .
По сравнению с известными решениями предлагаемое устройство позволяет эффективно перемешивать водно-зерновую смесь и давать высокие показатели аэрации воды, сокращает время мойки зерна, гарантирует полную дезинфекцию зерновой массы, не требует после процесса дезинфекции слива воды, т.к. озон разлагается в воде на кислород, при этом отпадает необходимость ополаскивания зерновой массы после дезинфекции, что экономит ресурсы воды. В процессе замачивания малые дозы озона в воде положительно влияют на активность ферментов в зерне.
Формула изобретения:
Аппарат дл замочки зерна, содержащий цилиндрический корпус с коническим днищем, трубопроводы, механизм дл отвода зерна, подвода и отвода воды, а также окно дл удаления сплава, отличающийся тем, что он снабжен озонатором, подсоединенным через трубопроводы к эжектору-смесителю, выходной патрубок которого трубопроводом соединен с жестко установленной на дне корпуса соплом вверх форсункой, над рабочим соплом которой установлен диффузор трубы гидролифта, на уровне затопления водой установлен сетчатый цилиндрический фильтр, внутри которого расположен клапан, соединенный трубопроводом, проходящим через герметичную с загрузочными шахтами крышку корпуса, с центробежным насосом, подсоединенным трубопроводом к эжектору-смесителю, при этом труба гидролифта жестко прикреплена к стенкам корпуса, на крышке которой установлена система вентиляции надводного пространства.
1.4.2 Теплоутилизатор для солодосушилки
Вертикальная сушилка «Топфа» относится к сушилкам периодического действия. В сушилках данного типа хорошо используется сушильное пространство, поэтому она относится к сушилкам высокой производительности. Отопление сушилки производят с помощью природного газа, сушат солод с помощью нагретого воздуха который пронизывает солод в поперечном направлении поступая в каждую зону через воздушные форсунки расположенные в полах сушильных зон.
Энергопотребление таких сушилок велико, поэтому в данных сушилках наиболее важным вопросом является вопрос оптимизация теплоэнергетической работы сушилки.
Оптимизация теплоэнергетической работы сушилки на тепловой баланс дает следующий эффект:
- для наиболее холодной пятидневки — снижение затрат тепловой и электрической энергии на подогрев и увлажнение приточного воздуха;
Одним из наиболее эффективных способов снижения энергоресурсов при эксплуатации солодосушилки является внедрение технологии утилизации вторичных потоков вытяжного воздуха. Удаляемый из солодосушилки воздух — довольно энергоемкий вторичный поток.
Сушилка с применением теплоутилизации позволяют сэкономить до 50%. Исследования показали, что нецелесообразно стремиться к высокой эффективности теплоутилизации. Оптимальная тепловая эффективность соответствует порядка 50 %, при этом система устойчиво работает до температур выше –20 оС, практически исключая режим обмерзания.
В настоящее время известны четыре типа утилизаторов тепла вытяжного воздуха: пластинчатые и роторные теплообменники, тепловые трубы и утилизаторы на основе промежуточного энергоносителя (как правило, этиленгликоля). В пластинчатых и роторных теплообменниках передача тепла осуществляется через стенку. В тепловых трубах тепло переносится изменением агрегатного состояния теплоносителя. В теплообменниках с промежуточным теплоносителем тепло переносится потоком мелкодисперсного материала или жидкости. Фактически такой теплообменник состоит из двух, они могут располагаться на значительном расстоянии друг от друга. Использование того или иного типа теплообменника в каждом конкретном случае должно быть обосновано технико-экономическим расчетом, поскольку каждый из них имеет свои достоинства и недостатки. Наибольшее распространение в системах вентиляции получили рекуперативные пластинчатые и роторные теплообменники и теплообменники с промежуточным теплоносителем.
При установке теплоутилизатора в солодосушилку на ОАО «Пивзавод Воронежский» необходимо использовать пластинчатый рекуператор (ДП-260601- -35-2005-ВСЛ-06.00.000 ВО) поскольку потоки воздуха должны оставаться разделенными, для предотвращения попадания влаги в подаваемый воздух. Эффективность пластинчатого рекуператора достигает 40%.
Рекуператор выполняется из алюминиевых листов со специальным покрытием поверхности, которая оптимизирует характеристики рекуператора, обеспечивая высокий КПД и низкое аэродинамическое сопротивление. Рекуператор может иметь встроенный байпас, который можно использовать для регулирования и прекращения рекуперации при угрозе замерзания. Такая система имеет два клапана: один в рекуператоре, другой — в байпасе. Управлять обоими клапанами можно с помощью одного электродвигателя. Под рекуператором устанавливается поддон для сбора конденсата. В линии отвода конденсата установлен водяной сифон с достаточной высотой затвора. Расчеты показывают, что применение теплоутилизаторов — выгодное и просто необходимое мероприятие.
1.5 Формулирование идеи модернизации и обоснование технического решения
1.5.1 Формулирование идеи модернизации замочного чана и обоснование технического решения
Модернизацией замочного чана является оборудование его системой озонирования воды. Введение озона в воду влечет за собой образование гидроксильного радикала - ОН и протона водорода Н. В результате химических и биохимических реакций образуются новые химические соединения, в том числе и такие естественные антисептики, как перекись водорода, муравьиная кислота и др. Образование антисептиков при озонолизе воды, частично объясняет приобретаемые водой дезинфицирующие свойства. Насыщение воды озоном позволяет уничтожать бактерии, споры, вирусы, разрушать растворенные в воде органические вещества. Применение озонированной воды возможно при всех традиционных способах замочки зерна (воздушно-водяной, непрерывным током воды и воздуха, оросительной). Внедрение новой технологии на этом этапе соложения позволит отказаться от дезинфекции ячменя хлоросодержащими препаратами, формалином, что обеспечит экологическую чистоту сырья, а также повысит прорастаемость зерна.
1.5.2 Формулирование идеи модернизации солодосушилки и обоснование технического решения
Теплоутилизаторы обеспечивают повышение на 5 - 10 % энергоэффективности оборудования и уменьшение вредных выбросов и теплового загрязнения окружающей среды. Например для промышленных котлов на природном газе снижение расхода газа на 5 - 8 м3 на 1 т вырабатываемого пара (для паровых котлов) и на 6 - 12 м3 на 1 Гкал вырабатываемой тепловой энергии (для водогрейных котлов). Для промышленных печей, теплогенераторов, сушильных установок теплоутилизаторы обеспечивают возврат и использование 30 - 60 % выбрасываемой тепловой энергии. Массогабаритные характеристики теплоутилизаторов значительно меньше, чем у теплообменников традиционных типов. Относительно небольшое аэродинамическое сопротивление теплоутилизаторов позволяет, при оснащении ими оборудования, использовать штатные тяго-дутьевые машины. Предлагаемый теплоутилизатор характеризуется высокой надежностью и стабильностью характеристик в условиях длительной работы.
2. Описание модернизируемых машин и аппаратов
2.1 Описание конструкции и технические характеристики сушилки периодического действия с вертикальными решетками марки «ТОПФА».
В данной сушилке солод находится между двумя вертикальными решетками, отстоящими одна от другой на расстоянии 0,20 м. Каждая такая секция (шахта) с солодом по вертикали разделена на три зоны, которые соответствуют верхней, средней и нижней решеткам трехъярусной сушилки. Между секциями с солодом находятся воздушные камеры шириной до 80 см.
В глухих перекрытиях между этажами воздушных камер имеются круглые отверстия с клапанами, расположенными в шахматном порядке, благодаря чему воздух проходит в сушилке зигзагообразно. Воздух трижды пересекает слой солода в секциях. В верхней части нижних и средних воздушных камер имеются воздуховоды для подачи холодного воздуха, подмешиваемого по мере надобности к теплому воздуху. Движение воздуха обеспечивается нагнетающими вентиляторами, установленными в нижнем этаже сушилки, и всасывающими вентиляторами, находящимися в верхнем этаже. Нагревание воздуха производится в паровых калориферах. Вертикальная сушилка имеет топку. Свежепроросший солод ковшовым элеватором поднимается на верхний этаж сушилки, затем телескопической трубой направляется в шнековый распределитель, который равномерно распределяет солод по всем секциям. Под каждой секцией установлен шнек для выгрузки солода по окончании цикла сушки.