Смекни!
smekni.com

Разработка автоматизированной системы управления теплицей (стр. 3 из 5)

3.1. Разрядности АЦП и ЦАП

Рассчитываем допустимое значение погрешности вычисления управляющего воздействия при значении коэффициента точности управляющего кода

:

В

Рассчитываем разрядность АЦП:

Таким образом, АЦП должен иметь не менее 8-ми разрядов.

Находим коэффициент пересчета АЦП:

(1/% RH)

Определяем величину младшего разряда АЦП:

(% RH)

Вычисляем разрядность ЦАП:

Получили, что ЦАП должен иметь не менее 8-ми разрядов.

Находим коэффициент пересчета ЦАП:

(В)

Таким образом, коэффициент пересчета от входа АЦП до выхода ЦАП:

(В/% RH)

3.2. Трансформированная погрешность

Рассчитываем трансформированную погрешность, которая обусловлена трансформацией погрешностей входных переменных, по которым определяется управление для ПИ закона. Для этого используем ряд конечных разностей

и расчётную формулу трансформированной погрешности

Если вычисление интеграла было выполнено по формуле трапеций, то погрешность определяется как:

Получили величину трансформированной погрешности, которая в два раза превосходит допустимую. Для её уменьшения введём экспоненциальное сглаживание с коэффициентом ослабления

, тогда:

В

3.3. Инструментальная погрешность

Для оценки инструментальной погрешности выбираем разрядность АЛУ микроконтроллера на 4 разряда больше, чем в АЦП, и рассчитываем величину младшего разряда.

(В)

Теперь для оценки инструментальной погрешности, которая обусловлена ограниченной длиной разрядной сетки вычислителя, необходимо подсчитать количество округлений в алгоритмах проверки на достоверность, сглаживание и ПИ-закона управления:

Полная инструментальная погрешность определяется как

,

где дисперсия единичного округления в АЛУ с учётом равномерного закона распределения определяется в виде:

Итак, имеем:

(В)

Находим методические погрешности интегрирования и дифференцирования на интервале

с помощью моделирования в пакете Simulink замкнутой системы:

В

Среднеквадратическое значение ошибки управляющего воздействия составляет:

2)

Из выполненных расчётов видно, что обеспечить заданную допустимую погрешность вычислений

В можно, выбрав коэффициент ослабления помех равный
, АЦП и ЦАП 8-ми разрядными, а количество разрядов АЛУ не менее 12-ти.

4. ПЕРВИЧНАЯ ОБРАБОТКА

При измерении технологических параметров информация от датчиков поступает в аппаратуру ввода/вывода в виде унифицированных сигналов (0-10В или 4-20 мА), т.е. реальной физической величине соответствует напряжение или сила тока. В устройствах связи с объектом эти сигналы преобразуются в двоичные коды длиной от 8 до 16 разрядов. Чтобы провести анализ получаемой информации, необходимо преобразовать коды АЦП в масштаб реальных физических величин: % RH, м3/час. К тому же датчики могут иметь статические ошибки, нелинейные характеристики или зашумленный выходной сигнал.

Для получения корректных значений результатов мониторинга из двоичных кодов применяют алгоритмы первичной обработки такие, как нормализация, пересчет в технические единицы, проверка на достоверность, сглаживание, проверка на технологические границы.

В данной работе исследуются такие алгоритмы первичной обработки, как

- проверка на достоверность,

- сглаживание.

Проверка на достоверность. Благодаря её выполнению, обнаруживаются и устраняются импульсные помехи, выявляется обрыв или короткое замыкание в канале связи и формируется сообщение о нарушениях оператору-технологу.

В данной работе в качестве измерительной погрешности учитывается только погрешность датчика. Если выбран датчик с погрешностью

, то максимально допустимое значение погрешности измерения определяется как:

Это выражение следует из нормального закона распределения погрешностей измерения, в соответствии с которым максимальное значение случайного сигнала ymax = 3σyy – среднеквадратическое значение). При этом условие проверки на достоверность имеет вид:

.

Проверка сигналов на достоверность заключается в следующем: если условие не выполняется, то содержимое счетчика нарушений увеличивается на 1, неверное значение показаний датчика заменяется последним достоверным, и проверяется следующее показание датчика. При этом осуществляется переход к меньшему шагу опроса датчика:

(
- новое значение шага опроса датчика после обнаружения первого неправильного отсчета). Процедура проверки повторяется. Если трижды подряд с шагом
не выполняется условие проверки на достоверность, то по знаку разности (
) принимается решение об обрыве или неисправности датчика i-го канала. Фиксируется время нарушения, его причина и включается резервный канал или резервный датчик.

Сглаживание. Обычно по ходу технологических процессов возникают помехи с частотами, близкими или равными частотам полезного сигнала. Примером такой помехи могут быть погрешности измерения. Устранить их аппаратными фильтрами не удается, но можно ослабить, и весьма существенно, программным путем, реализуя алгоритм скользящего или экспоненциального сглаживания.

Алгоритм скользящего среднего или скользящего окна имеет вид:

Mi – параметр сглаживания, величина которого определяет количество отсчетов

, взятых для вычисления одного сглаженного значения
.

Принцип скользящего: для вычисления очередного сглаженного значения записанная в Мi ячейках памяти информация сдвигается влево, и в освободившуюся ячейку заносится новый отсчет датчика. После чего выполняются процедуры суммирования Мi отсчетов и умножения на коэффициент

. Из анализа алгоритма ясно, что для его реализации потребуется Mi+2 ячейки памяти, а время готовности алгоритма выдать с заданной точностью 1-е сглаженное значение составит

.

Величина параметра сглаживания

вычисляется по заданному значению коэффициента ослабления помех
, который, в свою очередь, представляет собой отношение

,

где

- среднеквадратическое значение помех в отсчетах датчиков xik;
- среднеквадратическое значение помех в сглаженных, вычисленных в соответствии по алгоритму значений xcik.