Значение параметра сглаживания для i–го датчика:
.Экспоненциальное сглаживание. Его алгоритм имеет вид:
при начальном значении
и диапазоне изменения параметра сглаживания: 0<ai<1.Величина параметра a определяет длительность переходных процессов и качество сглаживания. Чем меньше a, тем лучше сглаживание, но тем большее время потребуется для получения сглаженного значения
с заданным ослаблением помехи .Выражение расчёта параметра
для алгоритма экспоненциального сглаживания, если задан коэффициент ослабления помех :Первое сглаженное значение будет получено с заданной точностью
в соответствии с алгоритмом спустя время: .Это время будет возрастать с увеличением точности вычислений δ. Достоинством алгоритма экспоненциального сглаживания, по сравнению со скользящим окном, является малый объем памяти, хотя он значительно дольше входит в установившийся режим.
Рис.14 .Результаты работы алгоритмов проверки на достоверность,
сглаживания скользящим средним с коэффициентом ослабления помех
,экспоненциального сглаживания со степенью приближения δ = 10-5
для сигнала с датчика влажности.
5. ВЫБОР БАЗОВОГО КОМПЛЕКСА
5.1. Микроконтроллер
ADuC7020 - микроконтроллер фирмы AnalogDevices для прецизионной обработки аналоговых сигналов, содержащий в своем кристалле полнофункциональную 12-разрядную систему сбора и обработки данных на основе ядра микроконтроллера ARM7TDMI и 12-разрядного АЦП с частотой преобразования 1 МГц. По аналогии с другими интегральными преобразователями данных микроконтроллер характеризуется сочетанием на одном кристалле прецизионного аналогово-цифрового и цифро-аналогового преобразования и флэш-микроконтроллера.
Рис.11. Функциональная схема микроконтроллера
(ИОН – источник опорного напряжения, ПЛМ – программируемая логическая матрица, УАПП – устройство асинхронной приемо-передачи, ОЗУ – оперативное запоминающее устройство, MIPS – млн. операций в сек.)
Отличительные особенности:
· 12-разр. АЦП с 5 мультиплексированными входами, частота преобразований АЦП 1 МГц
· Четыре 12-разр. ЦАП с выходами по напряжению с полным размахом (Rail-to-Rail)
· Прецизионный источник опорного напряжения (2,5В±10 мВ)
· Ядро микроконтроллера ARM7TDMI с производительностью 45 млн. операций в сек.
· 62 кбайт внутрисхемно перепрограммируемой флэш-памяти программ/данных
· 8 кбайт статического ОЗУ
· Последовательные порты: УАПП, SPI и два I2C
· Компаратор, матрица программируемой логики (PLA), супервизор питания (PSM), сброс при подаче питания (POR), гибкое конфигурирование блока синхронизации, гибкие режимы уменьшения энергопотребления
· Внутрисистемное последовательное программирование
· Внутрисистемная JTAG-эмуляция
· 14 линий универсального ввода-вывода
Устройство тактируется от встроенного генератора с синтезатором частоты с ФАПЧ (PLL), который генерирует тактовые импульсы с частотой до 45 МГц. Этот тактовый сигнал проходит через программируемый делитель частоты, с выхода которого тактовая частота поступает на ядро процессора. В микросхеме применено микропроцессорное ядро ARM7TDMI, 16/32-разрядный RISC процессор, обеспечивающий пиковую производительность до 45 миллионов операций в секунду (MIPS). На кристалле имеется 62 kB энергонезависимой
флэш/ЕЕ памяти, а также 8 kB статического ОЗУ (SRAM). Для ядра ARM7TDMI вся память и регистры доступны в одном линейном пространстве памяти.
Встроенное программное обеспечение поддерживает внутрисхемную последовательную загрузку через порты последовательных интерфейсов UART и JTAG, при этом через интерфейс JTAG можно осуществлять эмуляцию.
Данные микроконтроллеры работают при напряжении питания 2,7 … 3,6 В и их параметры нормированы для индустриального температурного диапазона
-40°C... 125°C. При работе на частоте 45 МГц рассеиваемая мощность составляет 150 мВт.
4.2. Аналого-цифровой преобразователь
Аналого-цифровой преобразователь, входящий в состав ADuC7020 – это быстродействующий, многоканальный 12-разрядный АЦП. Он работает при напряжении питания 2.7...3.6 В и обеспечивает производительность до 1 миллиона отсчетов в секунду (1 MSPS) при тактовой частоте 45 МГц. В блок АЦП входят многоканальный мультиплексор, дифференциальное устройство выборки-хранения, встроенный источник опорного напряжения (ИОН) и собственно АЦП.
Преобразователь представляет собой 12-разрядный АЦП последовательного приближения на основе двух ЦАП на переключаемых конденсаторах. АЦП может работать в одном из трех различных режимов, в зависимости от заданной конфигурации:
• полностью дифференциальный режим – для слабых дифференциальных сигналов;
• однополярный режим – для любых однополярных сигналов
• псевдодифференциальный режим – для любых однополярных сигналов, но при этом обеспечивается преимущество – подавление синфазного сигнала псевдодифференциальным входом.
Данный преобразователь работает с аналоговым сигналом в диапазоне от 0 до VREF при работе в однополярном или псевдодифференциальном режиме. В полностью дифференциальном режиме синфазное напряжение VCM входного сигнала должно находиться в диапазоне 0...AVDD и амплитуда входного сигнала не должна превышать 2·VREF.
На кристалле имеется прецизионный, высокостабильный источник опорного напряжения (ИОН) напряжением 2.5 В. Также можно использовать внешний ИОН, как описано ниже. С помощью программы запускается режим одиночного или непрерывного преобразования. Кроме того, для запуска аналого-цифрового преобразования может быть использован сигнал на входе CONVSTART, выходной сигнал встроенной в кристалл программируемой логической матрицы (PLA), а также сигнал переполнения таймера Timer1 или Timer2.
В псевдодифференциальном или однополярном режиме входной сигнал находится в диапазоне 0...VREF. Выходной код в псевдодифференциальном или однополярном режиме – прямой двоичный код, единица младшего разряда (LSB) соответствует 1 LSB = FS/4096 или 2.5 В/4096 = 0.61 мВ = 610 мкВ при опорном напряжении VREF = 2.5 В. В идеале характеристика преобразования проходит через точки 1/2 LSB, 3/2 LSBs, 5/2 LSBs, . . ., FS–3/2 LSB. Идеальная характеристика преобразования показана на рисунке 12.
Рис.12. Характеристика преобразования АЦП в
псевдодифференциальном или однополярном режиме
В полностью дифференциальном режиме амплитуда дифференциального сигнала представляет собой разность между величинами сигналов на входах VIN+ и VIN– (то есть VIN+ – VIN–). Максимальный размах дифференциального сигнала таким образом составляет величину от –VREF до + VREF (то есть 2·VREF). Это без учета синфазного сигнала (common mode, CM). Синфазный сигнал является средним двух сигналов, т.е. (VIN+ + VIN–)/2 и таким образом синфазный сигнал – это уровень, относительно которого изменяются два входных сигнала. Поэтому пределы изменения сигнала на каждом входе определяются величиной CM ± VREF/2. Синфазное напряжение устанавливается с помощью внешних цепей и его диапазон зависит от величины VREF. В полностью дифференциальном режиме аналоговый сигнал преобразуется в дополнительный цифровой код с величиной 1 LSB = 2·VREF/4096 или 2·2,5 V/4096 =1,22 мВ при VREF = 2,5 В. В идеале характеристика преобразования проходит через точки 1/2 LSB, 3/2LSBs, 5/2LSBs, ..., FS–3/2 LSB. Идеальная характеристика преобразования показана на рисунке 13.
Рис.13. Характеристика преобразования АЦП в
полностью дифференциальном режиме.
4.3. Цифро-аналоговый преобразователь
В микросхеме ADuC7020 имеется четыре 12-разрядных ЦАП с выходом напряжения. Каждый ЦАП обладает выходным буфером с полным диапазоном
напряжения (rail-to-rail) и способным работать на нагрузку 5 кОм/100 пФ. Буферы можно отключить.
ЦАП может работать в трех диапазонах выходного сигнала: 0...VREF (при работе с внутренним ИОН 2.5 В),0...DACREF (вывод 56) и 0...AVDD. К выводу DACREF подключается внешний опорный источник. Диапазон сигнала на этом входе может составлять от 0 до AVDD.
Каждый ЦАП управляется независимо при помощи регистра управления и регистра данных. Эти регистры одинаковы у всех четырех.
Структура ЦАП представляет собой цепочку резисторов (string DAC) с буферным усилителем на выходе. ИОН для каждого ЦАП может выбираться пользователем программно. Это может быть AVDD, VREF или DACREF. В режиме 0–AVDD сигнал на выходе ЦАП изменяется в диапазоне от 0 до
напряжения питания на выводе AVDD. В режиме 0–DACREF сигнал на выходе ЦАП изменяется в диапазоне от 0 до напряжения на выводе DACREF. В режиме 0–VREF сигнал на выходе ЦАП изменяется в диапазоне от 0 до напряжения внутреннего ИОН VREF = 2.5 В. Буфер на выходе ЦАП обладает rail-to-rail выходом. Это означает что при отсутствии нагрузки сигнал на выходе может приближаться ближе чем на 5 мВ к напряжениям питания (AGND и AVDD). Более того,параметры, характеризующие линейность ЦАП (при нагрузке 5 кОм) гарантированы для всего диапазона кода, за исключением диапазонов кода 0...100 и (если только АЦП работает в диапазоне 0–AVDD) для кодов 3995...4095. Линейность ухудшается вблизи "земли" и вблизи AVDD из-за насыщения выхода усилителя.