d2 = 154,44 (мм) – диаметр делительной окружности.
На эскизной компоновке редуктора замеряем размеры
l1 = 0,07 м; l2 = 0,12 м.
Вычисляем консольную длину участка:
lк = 0,7 · dв2 + (50 мм) = 0,7 ·40 + 50 = 0,078 м
Принимаем lк = 0,7 м.
Вычисляем консольную силу для зубчатого редуктора:
Fк = 125
(Н)Материал Сталь 45 из табл. 3.2 [1], ТО – улучшение с закалкой ТВЧ 45 HRC.
σb= 780 МПа; σ-1 = 335 МПа; τ0 = 370 МПа.
Способ обработки рабочих поверхностей – чистовая обточка, цапфы шлифуются.
Чертеж ведомого вала
1. Консольная сила прикладывается параллельно окружной и имеет противоположное ей направление.
Определяем осевой изгибающий момент:
Ма = Fa
(Н ·м)2. Определяем реакции опор в вертикальной плоскости:
ΣМ(А) i = 0 1) – УВ ·0,19 + Fr · 0,07 – Ma = 0
ΣМ(B) i = 0 2) УA ·0,19 – Fr · 0,12 – Ma = 0
=> 1) УВ =
(Н);=> 2) УА =
(Н);Проверка:
ΣFyi = 0
УА + УВ – Fr = 0
503,8– 262,8 – 241 = 0
0 = 0
Реакции найдены верно.
3. Строим эпюру изгибающих моментов Мх:
; (Н·м); (Н·м); ;4. Определяем реакции опор в горизонтальной плоскости
ΣМ(А) i = 0 1) Fк ·0,07 + Ft · 0,07 – XB · 0,19 = 0ΣМ(B) i = 0 2) Fk ·0,26 + XA · 0,19 – Ft · 0,12 = 0
=> 1) XВ =
(Н);=> 2) XА =
(Н);Проверка:
ΣFxi = 0
Fk + XA – Ft+ XB= 0
1713,5 – 808 – 2433,3+ 1527,8 = 0
0 = 0
Реакции найдены верно.
5. Строим эпюру изгибающих моментов Му:
; (Н·м); (Н·м); ;6. Строим эпюру суммарных изгибающих моментов:
Мис = 0;
МиА =
(Н·м);МиД =
(Н·м);Ми'Д =
(Н·м);МиВ = 0;
7. Строим эпюру крутящих моментов:
Мz = M3 = 187,9 (Н·м);
8. Опасным является сечение Д, т. к. МиД = Мmax,концентратор напряжений – шпоночный паз.
dк2 = 55 (мм); в = 16 (мм); t2 = 4,3 (мм) (табл. К 42 [1]);
Рис. 5. Эскиз шпоночного паза
9. Определяем геометрические характеристики сечения:
Wx= 0,1 dк23 –
(мм3)Wр = 0,2 dк23 –
(мм3)10. Определяем максимальное напряжение в опасном сечении:
σmax =
(МПа);τmax =
(МПа).11. Полагаем, что нормальные напряжения изменяются по симметричному циклу, а касательные по отнулевому циклу;
σа = σmax =12,4 (МПа);
τа =
(МПа).12. Из табл. 2.1–2.5 [3] выбираем коэффициенты влияния на предел выносливости.
Коэффициенты влияния абсолютных размеров поперечного сечения Кd:
dк2 Кdσ
50 – 0,81
5
20 55 – Δ 0,05
70 0,76
20 – 0,05 Δ =
5 – Δ Кdσ = 0,81 – 0,0125 = 0,797
dк2 Кdτ
50 – 0,7
5
20 55 – Δ 0,03
70 0,67
20 – 0,03 Δ =
5 – Δ Кdτ = 0,7 – 0,0075 = 0,693
Эффективный коэффициент концентрации напряжений Кδ(Кτ):
Кδ = 2,5; Кτ =2,3.
Коэффициенты влияния качества обработки КF:
КF = 0,83.
Коэффициент влияния поверхности упрочнения Кυ:
Кυ = 2.
13. Вычисляем коэффициенты снижения предела выносливости:
(Кδ)Д =
(Кτ)Д =
14. Определяем пределы выносливости в данном сечении:
(δ-1) Д =
(МПа);(τ0) Д =
(МПа);15. Определяем запас усталостной прочности по нормальным и касательным напряжениям
Sσ =
Sτ =
16. Определяем общий запас усталостной прочности и сравниваем его с допускаемым:
Принимаем [S] = 2
S =
S =S = 16,9 > [S] = 2.
Запас усталостной прочности обеспечен.
1.11 Выбор и проверочный расчет подшипников ведомого вала
Тип подшипника назначается в зависимости от условий работы подшипникового узла, в частности, о наличия осевой силы. Подшипник выбирается по соответствующей таблице в зависимости от диаметра цапфы.
Расчет заключается в определении расчетной динамической грузоподъемности и сравнении ее с грузоподъемностью подшипника, взятой из таблицы Сr расч ≤ Сr – условия работоспособности подшипника.
Из предыдущих расчетов известно:
dn2 = 50 мм – диаметр цапфы
Fa = 832,2 (Н) – осевая сила
t = 80 °C в подшипниковом узле
ω3 = 28,9 (р/с) – угловая скорость вала
LH– 12000 (час) – ресурс подшипника
Характер нагрузки – умеренные толчки.
УА = 503,8 (Н) – реакция опоры в вертикальной плоскости
УВ = – 241 (Н) – реакция опоры в вертикальной плоскости
ХА = -808 (Н) – реакция опоры в горизонтальной плоскости
ХВ = 1527,8 (Н) – реакция опоры в горизонтальной плоскости
Выбираем подшипник 7210 по табл. К 29 [1] (начиная с легкой серии)
1. Определяем суммарные реакции опор:
RA =
(Н);RВ =
(Н);2. Выписываем из таблицы К 29 [1] характеристику подшипника.
Сr = 52,9 (кН); Сor = 40,6 (кН); e = 0,37; у = 1,6.
3. В соответствии с условиями работы принимаем расчетные коэффициенты.
V = 1 – коэффициент вращения, т. к. вращается внутреннее кольцо подшипника.
Кб = 1,3 – коэффициент безопасности, учитывающий влияние характеристики нагрузки на долговечность подшипника.
КТ = 1 – коэффициент, учитывающий влияние температуры на долговечность подшипника.
3.1 Определим осевые составляющие от радиальных сил
RS1 = 0,83 eRA = 0,83 · 0,37 · 952,2 = 294,4 (Н);
RS2 = 0,83 eRВ = 0,83 · 0,37 · 1546,7 = 475 (Н);
3.2 Определяем расчетные осевые силы.
RS1 = 294,4 (Н) < RS2 = 475 (Н)
FA = 832,2 (Н) > RS2 – RS1 = 475 – 294,4 = 180,6 (H);
RА1 = RS1 = 294,4 (Н);
RA2 = RA1 + FA = 294,4 + 832,2 = 1126,6 (Н).
3.3 Определяем соотношение RA/V·R
< e = 0,37, то х = 1; у = 0 > e = 0,37, то х = 0,4; у = 1,6.4. Определяем эквивалентную динамическую нагрузку:
RE1 = (XVRA + УRa1) KTKб = (1·1·952,2+0·294,4) ·1·1,3 = 1237,9 (Н);
RE2 = (XVRВ + УRa2) KTKб = (0,4·1·1546,7+1,6·1126,6) ·1·1,3 = 3147,6 (Н);
Дальнейший расчет ведем по наиболее нагруженной опоре.
5. Определяем расчетную динамическую грузоподъемность:
Сr расч = Re2
(кН)Р = 3,33 – для роликовых подшипников
Сr расч = 3147,6
(кН).6. Сравниваем расчетную динамическую грузоподъемность Сr расч и базовую динамическую грузоподъемность Сr:
Сr расч = 15,42 (кН) < Сr= 52,9 (кН).
Подшипник 7210 удовлетворяет заданному режиму работы.
1.12 Выбор посадок
Посадки назначаем в соответствии с указаниями, данными в табл. 10.13 [2].