Смекни!
smekni.com

Разработка конического редуктора (стр. 3 из 4)

d2 = 154,44 (мм) – диаметр делительной окружности.

На эскизной компоновке редуктора замеряем размеры

l1 = 0,07 м; l2 = 0,12 м.

Вычисляем консольную длину участка:

lк = 0,7 · dв2 + (50 мм) = 0,7 ·40 + 50 = 0,078 м

Принимаем lк = 0,7 м.

Вычисляем консольную силу для зубчатого редуктора:

Fк = 125

(Н)

Материал Сталь 45 из табл. 3.2 [1], ТО – улучшение с закалкой ТВЧ 45 HRC.

σb= 780 МПа; σ-1 = 335 МПа; τ0 = 370 МПа.

Способ обработки рабочих поверхностей – чистовая обточка, цапфы шлифуются.


Чертеж ведомого вала

1. Консольная сила прикладывается параллельно окружной и имеет противоположное ей направление.

Определяем осевой изгибающий момент:

Ма = Fa

(Н ·м)

2. Определяем реакции опор в вертикальной плоскости:

ΣМ(А) i = 0 1) – УВ ·0,19 + Fr · 0,07 – Ma = 0

ΣМ(B) i = 0 2) УA ·0,19 – Fr · 0,12 – Ma = 0

=> 1) УВ =

(Н);

=> 2) УА =

(Н);

Проверка:

ΣFyi = 0

УА + УВ – Fr = 0

503,8– 262,8 – 241 = 0

0 = 0

Реакции найдены верно.

3. Строим эпюру изгибающих моментов Мх:

;

(Н·м);

(Н·м);

;

4. Определяем реакции опор в горизонтальной плоскости

ΣМ(А) i = 0 1) Fк ·0,07 + Ft · 0,07 – XB · 0,19 = 0

ΣМ(B) i = 0 2) Fk ·0,26 + XA · 0,19 – Ft · 0,12 = 0

=> 1) XВ =

(Н);

=> 2) XА =

(Н);

Проверка:

ΣFxi = 0

Fk + XA – Ft+ XB= 0

1713,5 – 808 – 2433,3+ 1527,8 = 0

0 = 0

Реакции найдены верно.

5. Строим эпюру изгибающих моментов Му:

;

(Н·м);

(Н·м);

;

6. Строим эпюру суммарных изгибающих моментов:

Мис = 0;

МиА =

(Н·м);

МиД =

(Н·м);

Ми'Д =

(Н·м);

МиВ = 0;

7. Строим эпюру крутящих моментов:

Мz = M3 = 187,9 (Н·м);

8. Опасным является сечение Д, т. к. МиД = Мmax,концентратор напряжений – шпоночный паз.

dк2 = 55 (мм); в = 16 (мм); t2 = 4,3 (мм) (табл. К 42 [1]);


Рис. 5. Эскиз шпоночного паза

9. Определяем геометрические характеристики сечения:

Wx= 0,1 dк23

(мм3)

Wр = 0,2 dк23

(мм3)

10. Определяем максимальное напряжение в опасном сечении:

σmax =

(МПа);

τmax =

(МПа).

11. Полагаем, что нормальные напряжения изменяются по симметричному циклу, а касательные по отнулевому циклу;

σа = σmax =12,4 (МПа);

τа =

(МПа).

12. Из табл. 2.1–2.5 [3] выбираем коэффициенты влияния на предел выносливости.

Коэффициенты влияния абсолютных размеров поперечного сечения Кd:

dк2 К

50 – 0,81

5

20 55 – Δ 0,05

70 0,76

20 – 0,05 Δ =

5 – Δ Кdσ = 0,81 – 0,0125 = 0,797

dк2 К

50 – 0,7

5

20 55 – Δ 0,03

70 0,67

20 – 0,03 Δ =

5 – Δ Кdτ = 0,7 – 0,0075 = 0,693

Эффективный коэффициент концентрации напряжений Кδτ):

Кδ = 2,5; Кτ =2,3.

Коэффициенты влияния качества обработки КF:

КF = 0,83.

Коэффициент влияния поверхности упрочнения Кυ:

Кυ = 2.

13. Вычисляем коэффициенты снижения предела выносливости:

δ)Д =

τ)Д =


14. Определяем пределы выносливости в данном сечении:

-1) Д =

(МПа);

0) Д =

(МПа);

15. Определяем запас усталостной прочности по нормальным и касательным напряжениям

Sσ =

Sτ =

16. Определяем общий запас усталостной прочности и сравниваем его с допускаемым:

Принимаем [S] = 2

S =

S =

S = 16,9 > [S] = 2.

Запас усталостной прочности обеспечен.

1.11 Выбор и проверочный расчет подшипников ведомого вала

Тип подшипника назначается в зависимости от условий работы подшипникового узла, в частности, о наличия осевой силы. Подшипник выбирается по соответствующей таблице в зависимости от диаметра цапфы.

Расчет заключается в определении расчетной динамической грузоподъемности и сравнении ее с грузоподъемностью подшипника, взятой из таблицы Сr расч ≤ Сr – условия работоспособности подшипника.

Из предыдущих расчетов известно:

dn2 = 50 мм – диаметр цапфы

Fa = 832,2 (Н) – осевая сила

t = 80 °C в подшипниковом узле

ω3 = 28,9 (р/с) – угловая скорость вала

LH– 12000 (час) – ресурс подшипника

Характер нагрузки – умеренные толчки.

УА = 503,8 (Н) – реакция опоры в вертикальной плоскости

УВ = – 241 (Н) – реакция опоры в вертикальной плоскости

ХА = -808 (Н) – реакция опоры в горизонтальной плоскости

ХВ = 1527,8 (Н) – реакция опоры в горизонтальной плоскости

Выбираем подшипник 7210 по табл. К 29 [1] (начиная с легкой серии)

1. Определяем суммарные реакции опор:

RA =

(Н);

RВ =

(Н);

2. Выписываем из таблицы К 29 [1] характеристику подшипника.

Сr = 52,9 (кН); Сor = 40,6 (кН); e = 0,37; у = 1,6.

3. В соответствии с условиями работы принимаем расчетные коэффициенты.

V = 1 – коэффициент вращения, т. к. вращается внутреннее кольцо подшипника.

Кб = 1,3 – коэффициент безопасности, учитывающий влияние характеристики нагрузки на долговечность подшипника.

КТ = 1 – коэффициент, учитывающий влияние температуры на долговечность подшипника.

3.1 Определим осевые составляющие от радиальных сил

RS1 = 0,83 eRA = 0,83 · 0,37 · 952,2 = 294,4 (Н);

RS2 = 0,83 eRВ = 0,83 · 0,37 · 1546,7 = 475 (Н);

3.2 Определяем расчетные осевые силы.

RS1 = 294,4 (Н) < RS2 = 475 (Н)

FA = 832,2 (Н) > RS2 – RS1 = 475 – 294,4 = 180,6 (H);

RА1 = RS1 = 294,4 (Н);

RA2 = RA1 + FA = 294,4 + 832,2 = 1126,6 (Н).

3.3 Определяем соотношение RA/V·R

< e = 0,37, то х = 1; у = 0

> e = 0,37, то х = 0,4; у = 1,6.

4. Определяем эквивалентную динамическую нагрузку:

RE1 = (XVRA + УRa1) KTKб = (1·1·952,2+0·294,4) ·1·1,3 = 1237,9 (Н);

RE2 = (XVRВ + УRa2) KTKб = (0,4·1·1546,7+1,6·1126,6) ·1·1,3 = 3147,6 (Н);

Дальнейший расчет ведем по наиболее нагруженной опоре.

5. Определяем расчетную динамическую грузоподъемность:


Сr расч = Re2

(кН)

Р = 3,33 – для роликовых подшипников

Сr расч = 3147,6

(кН).

6. Сравниваем расчетную динамическую грузоподъемность Сr расч и базовую динамическую грузоподъемность Сr:

Сr расч = 15,42 (кН) < Сr= 52,9 (кН).

Подшипник 7210 удовлетворяет заданному режиму работы.

1.12 Выбор посадок

Посадки назначаем в соответствии с указаниями, данными в табл. 10.13 [2].