В зависимости от количества введенной во флюс чугунной стружки меняется состав и свойства наплавленного слоя. Например, при введении во флюс 40% чугунной стружки слой, наплавленный малоуглеродистой проволокой СвО8, имеет твердость 400— 500 НВ и содержит 0,55% углерода, 1,65% марганца и 1,0% кремния. В процессе наплавки чугун из флюса переходит в расплавленный металл шва, благодаря чему вес наплавленного металла по сравнению с весом израсходованной проволоки повышается до 65%. Содержание чугуна во флюсе не должно превышать 50%. При большем количестве формирование наплавленного слоя и отделение шлаковой корки ухудшаются.
В качестве электрода для наплавки под флюсом применяют стандартную сварочную проволоку СВ (ГОСТ 2246—60), а также высококачественную углеродистую проволоку марок ВС и ОВС. Для наплавки обычно применяют проволоку диаметром 1—3 мм. С увеличением диаметра уменьшается плотность тока, и, соответственно, уменьшается давление дуги и глубина проплавления основного металла. Несколько увеличивается при этом ширина наплавляемого валика, но ухудшается устойчивость дуги и ход всего процесса наплавки.
Для увеличения производительности изготавливают, позволяющие наплавлять мртялл одновременно несколькими проволоками с общим подводом тока или электродную лентушириной от 10 до 100 мм и толщиной от 0,4 до 1,0 мм.
На ремонтных предприятиях наибольшее применение нашли наплавочные головки типа А-409, А-580 и ПАУ-1.
На рис. 6 показан общий вид головки ПАУ-1, разработанной в ГОСНИТИ специально для наплавочных работ на ремонтных предприятиях.
Высокое качество наплавки получается на постоянном токе при обратной полярности. Источник питания постоянного тока
(сварочный преобразователь типа ПС-300, ПСО-500 и др.) обеспечивает хорошую стабильность сварочной дуги и формирование наплавленного валика, меньшую склонность к образованию пор в наплавленном металле и лучшую отделяемость шлаковой корки. При наплавке неответственных деталей могут с успехом применяться сварочные трансформаторы СТН-500, ТСД-500 и др.Величина тока при наплавке проволокой диаметром 1,0; 1,2 и 2,0 мм выбирается соответственно в пределах 100—150; 160—200 250—400 А
Наименование и краткое содержание операции, технологические базы | Оборудование |
1. Подготовительная.Удалить эллипсность и конусность.Технологическая база - центровые отверстия | Токарный станок 1К62 |
2. . ПодготовительнаяСоздать шероховатость («рваная» резьба)Технологическая база - центровые отверстия | Токарный станок 1К62 |
3.НаплавкаНаплавить поверхность шеек валаТехнологическая база - центровые отверстия | Наплавочная головка |
4. ТокарнаяТочить поверхность шеек вала с одной стороны и подрезать торцы валаТехнологическая база - центровые отверстия | Токарный станок 1К62 |
5. ТокарнаяТочить поверхность шеек вала с другой стороны и подрезать торцы валаТехнологическая база - центровые отверстия | Токарный станок 1К62 |
6. ТермическаяЗакалить шейки вала до HRc 41-45 | Установка ТВЧ |
7. ШлифовальнаяШлифовать поверхность шеек вала согласно размерам КЭ | Кругло шлифовальный станок |
8. Контрольнаяпровести контроль восстановленной поверхности согласноКЭ |
Электродуговая сварка
Восстановление шпоночного паза происходит при помощи электродуговой сварки, путем заваривания паза, при этом вал переворачивается на 180° и вырезается паз с соблюдением технологических размеров.
1.6 Расчёт режимов обработки и нормы времени
1.6.1 Подбор режущего инструмента
Для получистовой обработки берём проходной, прямой, правый резец, оснащённый пластиной твёрдого сплава Т15К6, (принимаем по [1] гл 8.), выбираем форму передней поверхности – радиусную с отрицательной фаской; величина переднего и заднего углов, соответственно γ=15° и α=8°, (принимаем по [1] табл.15); величину главного и вспомогательного углов в плане принимаем φ= 45° φ1=10°, (принимаем по [1] табл.16 и 17); радиус при вершине принимаем r=1,5мм, (принимаем по [1] табл.20); ширину фаски принимаем f=0,4мм. и радиус канавки R=4мм.
1.6.2 Расчёт глубины резания
мм. мм., где D – диаметр заготовки
d – номинальный диаметр ремонтируемого вала, принимаем по заданию
1.6.3 Определение подачи
По [1] табл.39 находим подачу S=0,2-0,11мм/об. Уточняем подачу по паспорту станка, станок модели 1К62, принимаем подачу S=0,15мм/об.
1.6.4 Определение стойкости резцов
Принимаем стойкость резцов Т=90мин.
1.6.5 Определение скорости резания
При заданных условиях обработки по [1] табл.35 устанавливаем скорость резания V=171м/мин. Поправочных коэффициентов не вводим, т.к. табличные данные соответствуют заданным условиям обработки.
1.6.6 Расчёт числа оборотов шпинделя
об/мин об/мин, где V – скорость резания, (м/мин), см. п. 2.6.5.
π – математическая постоянная, π=3,14
D – диаметр заготовки
Уточняем число оборотов по паспорту станка ( [1]табл.38), принимаем n= 1800 об/мин.
1.6.7 Расчёт действительной скорости резания
м/мин м/мин, где π – математическая постоянная, π=3,14
D – диаметр заготовки
n – частота вращения шпинделя, см. п. 1.6.6.
1.6.8 Расчёт силы резания
Н Н, где Ср – коэффициент, принимаем по [1] табл.39
t – глубина резания, см. п. 1.6.2.
S – подача, см. п. 1.6.3.
1.6.9 Расчёт момента сопротивления резанию
Н Н, где Рп – сила резания, см. п. 1.6.8.
D – диаметр заготовки
1.6.10 Определение крутящего момента на шпинделе
По паспорту станка выбираем наибольший крутящий момент на шпинделе Мшп =12,5 кг·м
1.6.11 Расчёт основного машинного времени
мин, где i– число проходов
S – подача, см. п. 1.6.3.
n – частота вращения шпинделя, см. п. 1.6.6.
L – общая длина обрабатываемой детали и определяется по формуле:
мм, где l – длина детали, l1– врезание 1,5-2мм., l2– врезание 1,5-2мм.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. А.В. Егоров «Технология машиностроения», М.: Машиностроение, 1991г.
2. Ф.В. Гурин, М.Ф. Гурин «Технология автомобилестроения», М.: Машиностроение, 1986г.
3. И.В. Болгов, В.П. Остроумов «Технология ремонта оборудования», М.: «Лёгкая индустрия», 1982г.
4. С.И. Ансеров «Приспособления к металлорежущим станкам» М: Машиностроение, 1989г.