Смекни!
smekni.com

Разработка ресурсосберегающего технологического процесса изготовления детали "втулка" методом порошковой металлургии (стр. 1 из 3)

Федеральное агентство по образованию Российской Федерации

Вологодский государственный технический университет

Кафедра Э и ТПП

Курсовой проект по дисциплине

Разработка технологии производства

Разработка ресурсосберегающего технологического процесса изготовления детали «втулка» методом порошковой металлургии

Выполнил: ст. гр. МЭТ-21

Житков П.А.

Вологда

2009

Содержание

Введение

1. Информация к проектированию технологического процесса

1.1 Термическая обработка пресс-формы

1.2 Технология режима обработки резанием

1.3 Схема пресс-формы

3. Классификация детали по группе сложности

4. Расчет состава шихты аналитическим способом

5. Определение массы навески порошков

6. Разработка схемы участка порошковой металлургии

6.1 Выбор пресса

6.2 Выбор печи для спекания

Заключение

Список используемых источников

Введение

Наблюдающийся в настоящее время рост объема производства заготовок из порошков связан с возможностью увеличения коэффициента использования материала и специфическими свойствами порошковых деталей. Порошковая металлургия находит все новые области применения. Детали автомобилей, мотоциклов, бытовых приборов — это только некоторые примеры из широкого многообразия изделий из порошковых материалов.

Порошковая металлургия имеет следующие достоинства, обусловившие ее развитие.

1) Возможность получения таких материалов, которые трудно или невозможно получать др. методами. К ним относятся: некоторые тугоплавкие металлы ( сплавы и композиции на основе тугоплавких соединений (твердые сплавы на основе карбидов и др.): композиции и т. н. псевдосплавы металлов, не смешивающихся в расплавленном виде, в особенности при значительной разнице в температурах плавления (например, — композиции из металлов и неметаллов ( графит, пластмасса, окись и т.д.); пористые материалы (для подшипников, фильтров, уплотнений, теплообменников) и др.

2) Возможность получения некоторых материалов и изделий с более высокими технико-экономическими показателями. Порошковая металлургия позволяет экономить металл и значительно снижать себестоимость продукции (например, при изготовлении деталей литьем и обработкой резанием иногда до 60—80% металла теряется в литники, идет в стружку и т.п.).

3) При использовании чистых исходных порошков можно получить спеченные материалы с меньшим содержанием примесей и с более точным соответствием заданному составу, чем у обычных литых сплавов.

4) При одинаковом составе и плотности у спеченных материалов в связи с особенностью их структуры в ряде случаев свойства выше, чем у плавленых, в частности меньше сказывается неблагоприятное влияние предпочтительной ориентировки (текстуры), которая встречается у ряда литых металлов (например, бериллия) вследствие специфических условий затвердевания расплава.[1]

Большой недостаток некоторых литых сплавов (например, быстрорежущих сталей и некоторых жаропрочных сталей) — резкая неоднородность локального состава, вызванная ликвацией при затвердевании. Размеры и форму структурных элементов спеченных материалов легче регулировать, и главное, можно получать такие типы взаимного расположения и формы зерен, которые недостижимы для плавленого металла. Благодаря этим структурным особенностям спеченные металлы более термостойки, лучше переносят воздействие циклических колебаний температуры и напряжений, а также ядерного облучения, что очень важно для материалов новой техники.[2]


1. Информация к проектированию технологического процесса

ВТУЛКА - деталь машины или устройства в виде полого цилиндра (конуса), в отверстие которого входит сопрягаемая деталь. Втулки бывают сплошные и разрезные.

[7]

С увеличением масштабов выпуска и совершенствованием методов изготовления порошков решатся такие проблемы порошковой металлургии как: дороговизна исходных материалов. При массовом производстве расходы связанные с необходимостью изготовления индивидуальных приспособлений (пресс-форм) для каждого вида деталей сократятся до минимума. С исследованием и использованием на производстве получения чистых порошков распылением расплавленного железа решены такие проблемы как необходимость получения достаточно чистых исходных материалов.

Формовочный узел пресс-формы является основным, при разработке всей конструкции пресс-формы. Кроме формовочного узла – матрицы, пуансона, выталкивателя, стержня, пресс-форма дополнительно включает в себя такие детали как: корпус, верхняя и нижняя формовочные плиты, захваты, пуансонодержатель, направляющие колонки и втулки, крепежные детали.[3]


Схема маршрутно-технологического процесса изготовления детали методом порошковой металлургии

1.1 Термическая обработка пресс-формы

С целью увеличения прочности и износостойкости деталей пресс-формы проводят термическую обработку. При назначении режимов термической обработки учитывают то обстоятельство, что необходимо обеспечить режимом Т.О. пуансонов меньше чем HRC матрицы, это связано с тем, чтобы уменьшить истирающий износ матрицы.

В качестве материала для формообразующих деталей пресс-форм применятся различные марки сталей:

1) Если пресс-форма изготовляется как экспериментальная, то возможно ее изготовление из углеродистой инструментальной высококачественной стали;

2) Для условий промышленного производства применят легированную сталь

В качестве технологического параметра термической обработки, которая позволяет получить для одной и той же марки стали разные значения твердости служит температура отпуска.

В нашем случае используем сталь ШХ15. Это шарикоподшипниковая сталь, с содержанием хрома 1,5%.

Термическая обработка для матрицы:

Закалка с температурой нагрева до Тз= 840 °С.

Затем низкий отпуск при температуре Тот= 160 °С.

Данная термическая обработка позволяет получить твердость матрицы равную 61 HRC.

Термическая обработка для пуансона:

Закалка с температурой нагрева до Тз=840 °С.

Затем средний отпуск при температуре Тот= 220 °С.

В результате среднего отпуска получаемая твердость пуансона равна 59 HRC, что на 2 ед. ниже твердости матрицы.

Термическая обработка для вспомогательных деталей пресс-формы:

Назначим термическую обработку для направляющих колонок и втулок. Условия работы данных деталей сопровождается высоким поверхностным износом и вибрацией, поэтому материал детали должен сочетать в себе следующие свойства:

1. высокая поверхностная твердость для противодействия износу;

2. мягкую вязкую сердцевину способную воспринимать динамические нагрузки.

Для изготовления используем цементуемые марки стали с 0,25% С – 15Х, 20Х, 20ХН, 20ХНМ.

Цементация

Цементация стали — поверхностное диффузионное насыщение малоуглеродистой стали углеродом с целью повышения твёрдости, износоустойчивости.

Цементации подвергают низкоуглеродистые (обычно до 0.2 % C) и легированные стали, процесс в случае использования твёрдого карбюризатора проводится при температурах 900—950 °С, при газовой цементации (газообразный карбюризатор) — при 850—900 °С.

После цементации изделия подвергают термообработке, приводящей к образованию мартенситной фазы в поверхностном слое изделия (закалка на мартенсит) с последующим отпуском для снятия внутренних напряжений.

Цементация в твёрдом карбюризаторе

В этом процессе насыщающей средой является древесный уголь в зёрнах поперечником 3,5-10мм или каменноугольный полукокс и торфяной кокс, к которым добавляют активизаторы.

Технология процесса состоит в следующем: Загрузка деталей в стальной ящик с герметичным песчаным затвором. Укладка деталей производится таким образом, чтобы они были покрыты карбюризатором со всех сторон, не соприкасались друг с другом и стенками ящика. Далее ящик герметично закрывается песчаным затвором или замазывается огнеупорной глиной и загружается в печь.

Стандартный режим: 920 градусов, 1 час выдержки (после прогрева ящика) на 0,1 мм толщины цементированого слоя. для получения 1 мм слоя - выдержка 10 часов.

При "ускореном" режиме цементация производится при 980 градусах. Выдержка уменьшается в два раза и для получения слоя 1 мм требуется 5 часов. Но при этом образуется цементитная сетка, которую придется убирать многократной нормализацией.[5]

Цементация в газовом карбюризаторе

Этот процесс осуществляют в среде газов содержащих углерод. Газовая цементация имеет ряд преимуществ по сравнению с цементацией в твёрдом карбюризаторе, поэтому её широко применяют на заводах, изготовляющих детали массовыми партиями.

В случае с газовой цементации можно получить заданную концентрацию углерода в слое; сокращается длительность процесса, так как отпадает необходимость прогрева ящиков, наполненных малотеплопроводным карбюризатором; обеспечивается возможность полной механизации и автоматизации процессов и значительно упрощается последующая термическая обработка деталей, так как закалку можно проводить непосредственно из цементационной печи.

После цементации термическая обработка состоит из закалки и низкого отпуска. Тз=760°С.

В результате поверхностный слой приобретает структуру мартенсита отпуска, а сердцевина становиться ферритно-перлитной.

1.2 Технология режима обработки резанием